一、简介
插入排序适合数据量较小或者部分有序的序列排序,但是当序列的最小值在最右端时,需要比较n-1次并且移动n-1次才能将最小数插入序列的最左端。希尔排序对直接插入排序做了改进。在插入排序的基础上,将序列分组,利用了插入排序对数据量较小和部分有序序列高效的性质。
希尔排序首先将序列以“增量”h分成h组,分组情况如图
(41,41,78),(31,58,6),(59,1,15),(36,3,0)
在组内进行插入排序。一次排序完成后,减小“增量”h,继续分组,在组内进行插入排序,直到h=0为止。
希尔排序利用了插入排序的性质,开始时h较大,每组的数据量较小,之后h较小,序列部分有序。
这里还有一个问题,如何选择增量h呢?一般h小于序列长度,按照规则
h=3h+1
,即
h=1,4,13,40,121,364,...
,从小于序列长度的数字开始,依次减小。
二、伪代码
ShellSort(A)
//求增量h
while h<A.length/3
h=h*3+1
//对每个h分组进行插入排序,直到h==0
while h>=1
//将每组序列插入排序
for i=h to A.length-1
//将A[i]插入到A[i-h],A[i-2h]...中
for j=i;j>=h && A[j]<A[j-h];j-=h
swap(A[j],A[j-1])
//减小增量h
h=h/3;
三、代码实现
public class Method {
public static void main(String[] args) {
int[] array={41,31,59,26,41,58,1,3,78,6,15,0};
shellSort(array);
for(int x:array){
System.out.print(x+" ");
}
}
public static void shellSort(int[] a) {
int n = a.length;
//求增量 : 1, 4, 13, 40, 121, 364, 1093, ...
int h = 1;
while (h < n/3) h = 3*h + 1;
while (h >= 1) {
// 插入排序每个分组
for (int i = h; i < n; i++) {
//将A[i]插入到A[i-h],A[i-2h]...中
for (int j = i; j >= h && a[j]<a[j-h]; j -= h) {
int temp=a[j];
a[j]=a[j-h];
a[j-h]=temp;
}
}
//减小增量h
h /= 3;
}
}
}
四、复杂度分析
时间复杂度:
最好情况:O(n)
最坏情况:O(n^2)
平均情况:O(n^1.3)
空间复杂度:O(1),原址排序
五、注意事项
1、希尔排序的性能优于插入排序,对于大型数组表现也很好;
2、算法的性能不稳定,性能不仅取决于增量序列,还取决与增量序列之间的数学性质等;
3、选择好的增量序列有助于提高算法的性能,一般使用上文介绍的。
4、希尔排序每次循环之后,不能确定一个元素的最终位置。
5、对插入排序的改进还有折半插入排序,每次将A[i]插入到A[0]到A[i-1]中时,利用前面i-1个数有序的性质,进行二分查找A[i]应该插入的位置。由于折半插入排序比较次数减少,但是元素移动次数没有变,所以时间复杂的和直接插入排序一样。