定义:
只包含因子2、3和5的数称作丑数(Ugly Number)。
那么丑数依次为:1 2 4 5 8 10 16 20 25 32 40 50 64 80 100 125 128 160 200 250...
问题:
找出前n个丑数。
分析I:
最直接,最暴力的方法是单独判断每个数是否是丑数,太丑陋了,这里就不说了。
分析II:
这个问题,可以用类似生成素数表的方法来做:
使用辅助数组arr,这里arr[n]表示n是否为丑数;若是则为“true”,若不是则为“false”。
那么arr[n]=(n%2==0 && arr[n/2]) || (n%3==0 && arr[n/3]) || (n%5==0 && arr[n/5]),其中arr[1]=true。
但是,一个缺点是:需要用到太多的辅助空间(arr元素个数要比n大很多)。
分析III:
其实,我可以利用丑数的特点,更高效地求解:
下面引用何海涛关于丑数的分析:
这种思路的关键在于怎样确保数组里面的丑数是排好序的。我们假设数组中已经有若干个丑数,排好序后存在数组中。我们把现有的最大丑数记做M。现在我们来生成下一个丑数,该丑数肯定是前面某一个丑数乘以2、3或者5的结果。我们首先考虑把已有的每个丑数乘以2。在乘以2的时候,能得到若干个结果小于或等于M的。由于我们是按照顺序生成的,小于或者等于M肯定已经在数组中了,我们不需再次考虑;我们还会得到若干个大于M的结果,但我们只需要第一个大于M的结果,因为我们希望丑数是按从小到大顺序生成的,其他更大的结果我们以后再说。我们把得到的第一个乘以2后大于M的结果,记为M2。同样我们把已有的每一个丑数乘以3和5,能得到第一个大于M的结果M3和M5。那么下一个丑数应该是M2、M3和M5三个数的最小者。
前面我们分析的时候,提到把已有的每个丑数分别都乘以2、3和5,事实上是不需要的,因为已有的丑数是按顺序存在数组中的。对乘以2而言,肯定存在某一个丑数T2,排在它之前的每一个丑数乘以2得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以2得到的结果都会太大。我们只需要记下这个丑数的位置,同时每次生成新的丑数的时候,去更新这个T2。对乘以3和5而言,存在着同样的T3和T5。
代码:
void getUglyNumbers(int n, vector<int> &v){
v.resize(n);
v[0] = 1;
int i2 = 0, i3 = 0, i5 = 0;
int val2 = v[i2]*2, val3 = v[i3]*3, val5 = v[i5]*5;
for(int i = 1; i < n; ++i){
v[i] = min(val2, min(val3, val5));
if(v[i] == val2)
val2 = v[++i2] * 2;
if(v[i] == val3)
val3 = v[++i3] * 3;
if(v[i] == val5)
val5 = v[++i5] * 5;
}
}