leetcode 84.Largest Rectangle in Histogram, 85.Maximal Rectangle

leetcode 84.Largest Rectangle in Histogram(Hard)

Problem:
Given n non-negative integers representing the histogram’s bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
这里写图片描述
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].
这里写图片描述
The largest rectangle is shown in the shaded area, which has area = 10 unit.

Example:
Given heights = [2,1,5,6,2,3],
return 10.

Algorithm:
方法一:显然,最大面积矩形的高即为条形图中某一元素的高度。因此,较为直接的做法是枚举所有的元素,以其高度作为矩形的高度,再尽可能地往左往右延伸,取最大长度为矩形的宽度,最后选出所有矩形中的最大值,即为我们所求的答案。由于算法复杂度为O(n^2),本题会导致超时

方法二:我们注意到以下几点特征:
(1)若条形图元素高度依次递增,假设条形图中共有n个元素,则以第i个元素(i = 0,1,2…)作为高的最大矩形的宽度必然为n - i,因为它只能往右边延伸且能延伸到最右端。也就是说,以其作为高的最大矩形面积为h[i] * (n - i),这样,我们只需要以每个元素为高计算面积,再选出最大者即可,时间复杂度为O(n)。
(2)在上述条形图的基础上,假设我们在其中两个元素i,j之间插入一系列元素(假设插入的元素也满足依次递增),且每个新插入元素的高度均大于i和j的高度。显然,如果整个图最大矩形的高为新插入元素中任意一个的高度,则矩形最大宽度必定不会超过新插入的这组元素个数,因为i,j的高度均比它们的小。这时,我们可以把新插入的元素组看成一个新的条形图,进行步骤1的处理即可得到最大矩形面积。如果最大矩形高度不属于新插入的元素,则最大矩形的算法与步骤1相同,只是以i及i左边的元素作为高的最大矩形宽度有所改变(新宽 = 原宽 + 新插入元素个数)
(3)注意,步骤2中的i可以不存在,即往原条形图的左侧插入新元素,这种情况与步骤2中的分析是相同的。
(4)多次重复步骤2或3,即可得到参差不齐的条形图及计算最大矩形的方法

方法二实现方法:
(1)用一个栈来存储元素下标,在原条形图最右侧插入高度为0的元素作为结束标志。
(2)从左往右遍历每个条形图元素,若该元素的高度大于栈顶元素的高度,则将其入栈。也就是说,我们保证栈中元素高度依次递增
(3)若遍历到某一元素i的高度小于栈顶元素高度,则弹出栈中所有比它高的元素。所有弹出的元素等价于方法二步骤2中新插入的元素(注意,这些元素满足依次递增)。我们把这些弹出的元素看成一个新的条形图,计算出其最大矩形面积(用方法二中步骤1的方法),与当前所记录的最大面积进行比较更新。
(4)令该元素i入栈,重复步骤2,直到遍历完所有元素。
(5)因为条形图最后一个元素为0,所以原条形图中的所有元素必会经历步骤3的过程。而0对最大面积不造成影响,因此算法是正确的。该方法的时间复杂度为O(n)

Code:

class Solution {
public:
    int largestRectangleArea(vector<int>& heights) {
        heights.push_back(0);  //条形图后面补0
        stack<int> s;
        s.push(0);
        int smax = 0;
        for(int i = 1; i < heights.size(); ++ i) {
            //将满足递增关系的元素入栈
            while(heights[i] > heights[s.top()]) {
                s.push(i);
                ++ i;
            }
            //弹出所有不满足的元素,更新最大面积
            while(heights[i] < heights[s.top()]) {
                int cindex = s.top();
                s.pop();
                if(s.empty()){
                    smax = max(smax, heights[cindex] * i);
                    break;
                }
                smax = max(smax, heights[cindex] * (i - s.top() - 1));
            }
            s.push(i);
        }
        return smax;
    }
};

leetcode 85.Maximal Rectangle(Hard)

Problem:
Given a 2D binary matrix filled with 0’s and 1’s, find the largest rectangle containing only 1’s and return its area.

Example:
given the following matrix:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
Return 6

Algorithm:
该题思路与leetcode 84相似,我们用矩阵中的每一行及其以上各行生成一个柱形图,求出最大面积,再求出所有柱形图中的面积最大者即可。

Code:

class Solution {
public:
    //leetcode 84
    int largestRectangleArea(vector<int>& heights) {
        heights.push_back(0);
        stack<int> s;
        s.push(0);
        int smax = 0;
        for(int i = 1; i < heights.size(); ++ i) {
            while(heights[i] > heights[s.top()]) {
                s.push(i);
                ++ i;
            }
            while(heights[i] < heights[s.top()]) {
                int cindex = s.top();
                s.pop();
                if(s.empty()){
                    smax = max(smax, heights[cindex] * i);
                    break;
                }
                smax = max(smax, heights[cindex] * (i - s.top() - 1));
            }
            s.push(i);
        }
        return smax;
    }
    //leetcode 85
    int maximalRectangle(vector<vector<char>>& matrix) {
        if(matrix.size() == 0) return 0;
        vector<int> v(matrix[0].size());
        int mmax = 0;
        for(int i = 0; i < matrix.size(); ++ i) {
            for(int j = 0; j < matrix[i].size(); ++ j) {
                if(matrix[i][j] == '1') v[j] ++;
                else v[j] = 0; 
            }
            mmax = max(mmax, largestRectangleArea(v));
        }
        return mmax;
    }
};
以下是对提供的参考资料的总结,按照要求结构化多个要点分条输出: 4G/5G无线网络优化与网规案例分析: NSA站点下终端掉4G问题:部分用户反馈NSA终端频繁掉4G,主要因终端主动发起SCGfail导致。分析显示,在信号较好的环境下,终端可能因节能、过热保护等原因主动释放连接。解决方案建议终端侧进行分析处理,尝试关闭节电开关等。 RSSI算法识别天馈遮挡:通过计算RSSI平均值及差值识别天馈遮挡,差值大于3dB则认定有遮挡。不同设备分组规则不同,如64T和32T。此方法可有效帮助现场人员识别因环境变化引起的网络问题。 5G 160M组网小区CA不生效:某5G站点开启100M+60M CA功能后,测试发现UE无法正常使用CA功能。问题原因在于CA频点集标识配置错误,修正后测试正常。 5G网络优化与策略: CCE映射方式优化:针对诺基亚站点覆盖农村区域,通过优化CCE资源映射方式(交织、非交织),提升RRC连接建立成功率和无线接通率。非交织方式相比交织方式有显著提升。 5G AAU两扇区组网:与三扇区组网相比,AAU两扇区组网在RSRP、SINR、下载速率和上传速率上表现不同,需根据具体场景选择适合的组网方式。 5G语音解决方案:包括沿用4G语音解决方案、EPS Fallback方案和VoNR方案。不同方案适用于不同的5G组网策略,如NSA和SA,并影响语音连续性和网络覆盖。 4G网络优化与资源利用: 4G室分设备利旧:面对4G网络投资压减与资源需求矛盾,提出利旧多维度调优策略,包括资源整合、统筹调配既有资源,以满足新增需求和提质增效。 宏站RRU设备1托N射灯:针对5G深度覆盖需求,研究使用宏站AAU结合1托N射灯方案,快速便捷地开通5G站点,提升深度覆盖能力。 基站与流程管理: 爱立信LTE基站邻区添加流程:未提供具体内容,但通常涉及邻区规划、参数配置、测试验证等步骤,以确保基站间顺畅切换和覆盖连续性。 网络规划与策略: 新高铁跨海大桥覆盖方案试点:虽未提供详细内容,但可推测涉及高铁跨海大桥区域的4G/5G网络覆盖规划,需考虑信号穿透、移动性管理、网络容量等因素。 总结: 提供的参考资料涵盖了4G/5G无线网络优化、网规案例分析、网络优化策略、资源利用、基站管理等多个方面。 通过具体案例分析,展示了无线网络优化中的常见问题及解决方案,如NSA终端掉4G、RSSI识别天馈遮挡、CA不生效等。 强调了5G网络优化与策略的重要性,包括CCE映射方式优化、5G语音解决方案、AAU扇区组网选择等。 提出了4G网络优化与资源利用的策略,如室分设备利旧、宏站RRU设备1托N射灯等。 基站与流程管理方面,提到了爱立信LTE基站邻区添加流程,但未给出具体细节。 新高铁跨海大桥覆盖方案试点展示了特殊场景下的网络规划需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值