【滑动窗口】串联所有单词的子串


在这里插入图片描述

30. 串联所有单词的子串

30. 串联所有单词的子串

给定一个字符串 s 和一个字符串数组 words words 中所有字符串 长度相同

s 中的 串联子串 是指一个包含 words 中所有字符串以任意顺序排列连接起来的子串。

  • 例如,如果 words = ["ab","cd","ef"], 那么 "abcdef""abefcd""cdabef""cdefab""efabcd", 和 "efcdab" 都是串联子串。 "acdbef" 不是串联子串,因为他不是任何 words 排列的连接。

返回所有串联子串在 s 中的开始索引。你可以以 任意顺序 返回答案。

示例 1:

输入:s = "barfoothefoobarman", words = ["foo","bar"]
输出:[0,9]
解释:因为 words.length == 2 同时 words[i].length == 3,连接的子字符串的长度必须为 6。
子串 "barfoo" 开始位置是 0。它是 words 中以 ["bar","foo"] 顺序排列的连接。
子串 "foobar" 开始位置是 9。它是 words 中以 ["foo","bar"] 顺序排列的连接。
输出顺序无关紧要。返回 [9,0] 也是可以的。

示例 2:

输入:s = "wordgoodgoodgoodbestword", words = ["word","good","best","word"]
输出:[]
解释:因为 words.length == 4 并且 words[i].length == 4,所以串联子串的长度必须为 16。
s 中没有子串长度为 16 并且等于 words 的任何顺序排列的连接。
所以我们返回一个空数组。

示例 3:

输入:s = "barfoofoobarthefoobarman", words = ["bar","foo","the"]
输出:[6,9,12]
解释:因为 words.length == 3 并且 words[i].length == 3,所以串联子串的长度必须为 9。
子串 "foobarthe" 开始位置是 6。它是 words 中以 ["foo","bar","the"] 顺序排列的连接。
子串 "barthefoo" 开始位置是 9。它是 words 中以 ["bar","the","foo"] 顺序排列的连接。
子串 "thefoobar" 开始位置是 12。它是 words 中以 ["the","foo","bar"] 顺序排列的连接。

提示:

  • 1 <= s.length <= 104
  • 1 <= words.length <= 5000
  • 1 <= words[i].length <= 30
  • words[i]s 由小写英文字母组成

解题思路:哈希表 + 滑动窗口 + 计数器优化

​ 如果前面做过了 438. 找到字符串中所有字母异位词 这道题,再来做这道题的话,无疑就是降维打击,因为这道题就是在 438 这道题的基础之上变形,从字符变成了字符串罢了,并且我们还在 438 这道题的解法中介绍了计数器优化,就是为了这道题提高效率做准备的!

​ 这也可以看出来力扣上题目的排序其实不太合理,要是上来就做这道题,怎么不是劝退呢,对不对!

​ 对于这道题,我们只讲变化之处,其它的思想和 438 这道题的思想是一致的,切记,要理解思想,而不是记下来题解

​ 变化之处大概是以下三点:

  1. 哈希表的变化
  2. 滑动窗口的移动幅度
  3. 滑动窗口的执行次数

1、哈希表的变化

​ 首先我们肯定不能用一个普通数组来充当哈希表了,得用 STL 中的 unordered_map<string, int> 来统计 words 数组中字符串出现的个数!

2、滑动窗口的移动幅度

​ 这是和上一道题区分最大的一点,因为这道题说每个单词的长度都是一致的,这里用 size 表示一个单词的长度,那假设此时 leftright 也就是滑动窗口的左右边界,它们在移动的时候,其实就不需要说一个一个字符去遍历,因为我们可以一步到位,直接往后跳 size 个字符长度,就是一个单词长度了!相当于把字符串划分为下面的情况:
在这里插入图片描述

相当于是把一个单词长度的字符串,看成一个字符,那不就变成 438 那道题了吗,对不对!

3、滑动窗口的执行次数

​ 如果我们只是按照上面的情况,将字符串 s 按照单词的长度分为多段去跳跃遍历,大家有没有想到一个很熟悉的排序算法,没错,就是 希尔排序,假设这里单词的长度是 3,那么这里相当于是希尔排序固定 gap=3 的情况!

​ 为什么要提希尔排序呢,因为这里 分段去跳跃遍历的话,是需要分组的,如下所示:
在这里插入图片描述

​ 只要注意这三个细节,其它的都是和 438 那道题是一样的,只不过变成了求字符串罢了,代码如下所示:

class Solution {
public:
    vector<int> findSubstring(string s, vector<string>& words) {
        // 映射words中所有的单词
        unordered_map<string, int> wordhash;
        for(const auto& e : words)
            wordhash[e]++;

        int n = words.size(), size = words[0].size();
        vector<int> ret;

        // 一共需要遍历size次,类似于希尔排序的跨步思想
        for(int i = 0; i < size; ++i)
        {
            int left = i;
            int count = 0; // 计数器
            unordered_map<string, int> hash;
            for(int right = i; right < s.size(); right += size) // 每次跨越size步
            {
                // right截取的size个字符
                string subright = s.substr(right, size); 

                // 进窗口
                hash[subright]++;
                if(hash[subright] <= wordhash[subright]) // 如果单词有效才count++
                    count++;
                
                if(right - left + 1 > n*size)
                {
                    // left截取的size个字符
                    string subleft = s.substr(left, size); 
    
                    // 出窗口
                    hash[subleft]--;
                    if(hash[subleft] < wordhash[subleft]) // 如果单词有效才count--
                        count--;
                    left += size;
                }

                if(count == n)
                    ret.push_back(left);
            }
        }
        return ret;
    }
};

哈希表小优化

​ 问题如下所示:
在这里插入图片描述

​ 为了规避这个问题,我们可以先判断一下,wordhash 中是否存在 subright/subleft 这个单词,如果不存在就没必要比较而导致效率变低了,所以优化后的部分如下所示:
在这里插入图片描述

​ 这样子在一定程度上提高了效率:
在这里插入图片描述

整体代码如下所示:

class Solution {
public:
    vector<int> findSubstring(string s, vector<string>& words) {
        // 映射words中所有的单词
        unordered_map<string, int> wordhash;
        for(const auto& e : words)
            wordhash[e]++;

        int n = words.size(), size = words[0].size();
        vector<int> ret;

        // 一共需要遍历size次,类似于希尔排序的跨步思想
        for(int i = 0; i < size; ++i)
        {
            int left = i;
            int count = 0;
            unordered_map<string, int> hash;
            for(int right = i; right < s.size(); right += size)
            {
                string subright = s.substr(right, size); // right截取的size个字符

                // 进窗口
                hash[subright]++;
                if(wordhash.count(subright) && hash[subright] <= wordhash[subright]) // 如果单词有效才count++
                    count++;
                
                if(right - left + 1 > n*size)
                {
                    string subleft = s.substr(left, size); // left截取的size个字符
    
                    // 出窗口
                    hash[subleft]--;
                    if(wordhash.count(subleft) && hash[subleft] < wordhash[subleft]) // 如果单词有效才count--
                        count--;
                    left += size;
                }

                if(count == n)
                    ret.push_back(left);
            }
        }
        return ret;
    }
};

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

利刃大大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值