CS224N notes_chapter14_Recursive Neural Network

第十四讲 树RNN和短语句法分析

Language understanding - it requires being able to understand bigger things from knowing about smaller parts.
Language could be respresented in a recursive way. For example, Noun phrase containing a noun phrase containing a noun phrase.
#我们希望把比较长的短语也嵌入到词向量空间中,从而也能计算它们的相似度。比如’the place where I was born’ 和 ‘my hometown’。
We could use principle of compositionality to map phrases into vector space.
(1)the meanings of its words
(2)the rules that combines them
#我们为树的每个结点赋值,规则为对其左右结点的向量进行平均(或者其他处理),而后得到根节点的向量,即得到整个短语的结果
两种RNN的对比
在这里插入图片描述
在这里插入图片描述
How to construct such RNN tree?
We coule use Neural Network as well.
input c 1 , c 2 \mathbf{c_1,c_2} c1,c2, output s c o r e , p a r e n t score,parent score,parent.
#score表示这两个子节点适不适合结合在一起,而parent是结合以后的特征向量
s c o r e = U T p p = t a n h ( W [ c 1 ; c 2 ] + b ) \begin{aligned} score =& U^Tp \\ p=&tanh(W[c_1;c_2]+b) \end{aligned} score=p=UTptanh(W[c1;c2]+b)
Loss function:
J = ∑ i s ( x i , y i ) − max ⁡ y ∈ A ( x i ) ( s ( x i , y ) + Δ ( y , y i ) ) J=\sum_i s(x_i,y_i)-\max_{y\in A(x_i)}(s(x_i,y)+\Delta (y,y_i)) J=is(xi,yi)yA(xi)max(s(xi,y)+Δ(y,yi))

#其中, x i x_i xi表示输入的句子, y i y_i yi表示真实的树, s ( x , y ) s(x,y) s(x,y)表示当前树的每个结点对应的 s c o r e score score的加和, A ( x ) A(x) A(x)表示模型自己生成的树结构。 Δ \Delta Δ项用来惩罚错误的决策。于是我们最小化这个损失函数,一方面能让模型解析出来的树获得尽可能高的得分,另一方面能有监督地让模型学到正确的树结构
Improments

  • 上面的p值其实在复用同样的一个矩阵 W W W,实际上我们可以通过树种每个结点的类别来定义不同的的权重,比如结点的两侧分别是介词(prep)和名词(noun),那么我们其实就可以专门定义一个 W p r e p , n o u n W^{prep,noun} Wprep,noun,而如果两个子结点分别是动词(verb)和名词(noun),我们又可以定义一个 W v e r b , n o u n W^{verb,noun} Wverb,noun,这样就粗略地有了一个区分。实践中也证明这种方法确实能对性能的提升带来帮助。
  • 有些词可以被看成是operator,比如very。我们这个时候可以对一个词同时用向量和矩阵来表示 a , A a,A a,A
    p = f ( W [ A b B a ] ) P = f ( W M [ A B ] ) p=f(W\left[ \begin{array}{ccc} Ab \\ Ba \end{array} \right]) \\ P=f(W_M\left[ \begin{array}{ccc} A \\ B \end{array} \right]) p=f(W[AbBa])P=f(WM[AB])
    其中 W M ∈ R n × 2 n W_M\in \mathbb{R}^{n\times 2n} WMRn×2n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值