- 博客(32)
- 收藏
- 关注
原创 leetcode_300 Longest Increasing Subsequence(贪心+二分查找)
Given an unsorted array of integers, find the length of longest increasing subsequence.Example:Input: [10,9,2,5,3,7,101,18]Output: 4 Explanation: The longest increasing subsequence is [2,3,7,101]...
2020-05-08 00:30:49 210 1
原创 leetcode_209 Minimum Size Subarray Sum
题目描述Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn’t one, return 0 instead.Example:Input: s = 7,...
2019-08-18 19:40:12 143
原创 leetcode_208 Implement Trie (Prefix Tree)
题目描述Implement a trie with insert, search, and startsWith methods.Example:Trie trie = new Trie();trie.insert("apple");trie.search("apple"); // returns truetrie.search("app"); // returns fa...
2019-08-16 00:20:17 152
原创 leetcode_207 Course Schedule (dfs, bfs, 拓扑排序)
class Solution: def canFinish(self, numCourses: int, prerequisites: List[List[int]]) -> bool: pre_dict = [[] for _ in range(numCourses)] tested = [0 for _ in range(numCourses)]...
2019-08-14 16:11:14 177
原创 面试官问“你有什么想问我的”时怎么回答
在牛客上回答了一下这个帖子,算是自己的一个小总结,po出来后续继续完善作者:R.Li链接:https://www.nowcoder.com/discuss/222978?toCommentId=3499831来源:牛客网面试结果相关1.1 多久能知道结果/什么时候是下一面/啥时候能发offer1.2 面试表现如何/您有多大概率让我通过/一共有多少人要面试,最终录几个1.3 面试官比较...
2019-08-14 12:37:35 586
原创 leetcode_206 Reverse Linked List
问题描述Reverse a singly linked list.Example:Input: 1->2->3->4->5->NULLOutput: 5->4->3->2->1->NULL思路分析有递归和非递归两种方法,递归算法可以去掉头结点然后反转子链表,然后把头结点插入到末尾;...
2019-08-13 12:29:47 90
原创 leetcode_203 Remove Linked List Elements
# Definition for singly-linked list.# class ListNode:# def __init__(self, x):# self.val = x# self.next = Noneclass Solution: def removeElements(self, head: ListNode, val:...
2019-08-12 19:52:18 100
原创 leetcode_202 Happy Number
Write an algorithm to determine if a number is “happy”.A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of...
2019-08-12 15:51:20 106
原创 推荐系统实战_读书笔记_第一章_好的推荐系统
1.1 什么是推荐系统information overload, 信息过载。比如你想看一部电影,打开豆瓣一搜,百年来上映的电影随你挑,这时候你很难做出一个选择,需要一个人或者一个工具为你做出推荐。推荐系统的目的是解决两方面的问题,一是让用户发现对自己有价值的信息,另一方面是让信息出现在对自己感兴趣的用户面前。搜索引擎和推荐系统对于用户来讲是互补的工具。搜索引擎满足了用户有明确目的时的主动查找...
2019-08-12 15:15:57 834
原创 leetcode_201 Bitwise AND of Numbers Range
问题描述Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive.Example 1:Input: [5,7]Output: 4Example 2:Input: [0,1]Output: 0...
2019-08-11 21:42:14 98
原创 KDD_2018_notes Smoothed Dilated Convolutions for Improved Dense Prediction
前言笔者重温了机器学习相关的一些算法后,打算来看一些数据挖掘领域的论文,会写一些笔记来记录。先从KDD 2018入手。本文要介绍的是一个空洞卷积(Dilated Convolutions)的改进方法。空洞卷积存在的问题对于空洞卷积来讲,卷积后的 feature map 中,相邻两个 pixel 来自于上一层 feature map 中完全不同的两组点,因而很容易造成网格状态论文给出的改...
2019-07-23 00:40:21 366
原创 机器学习_XGBoost整理
https://xgboost.readthedocs.io/en/latest//tutorials/index.html
2019-07-21 18:06:10 163
原创 CS224N notes_chapter15_Coreference Resolution
第十五讲 共指解析Coreference ResolutionIdea: Identify all noun phrases that refer #说白了就是要搞清楚每个名词短语指代的是谁 比如 John loves his wife. He prepares breakfirst for her everyday. 我们知道his,He都指代(co-refer)的是John.None p...
2019-07-11 17:46:04 300
原创 CS224N notes_chapter14_Recursive Neural Network
第十四讲 树RNN和短语句法分析Language understanding - it requires being able to understand bigger things from knowing about smaller parts.Language could be respresented in a recursive way. For example, Noun phra...
2019-07-11 00:34:01 158
原创 CS224N notes_chapter13_CNN
第十三讲 CNNFrom RNN to CNNRNN can only capture a phrase given its left side context.#就是说,你如果想拿到RNN对某一个输入向量的处理结果,你需要把它前边的输入都过一遍,而不能只拆出其中的一部分Main CNN idea:Compute vectors for every possible phrase.R...
2019-07-10 11:21:16 108
原创 CS224N notes_chapter11_Review GRU & LSTM
第十一讲 Review GRU & LSTM原视频中还涉及一些关于MT的其他议题,笔者在此处忽略了。GRUidea: Perhaps we could use shortcut connections to prevent model from gradient vanishing. -> adaptive shortcut connections(utu_tut).f(h...
2019-07-06 12:51:08 128
原创 CS224N notes_chapter9_machine translation & LSTM & GRU
第九讲 machine translation & LSTM & GRUCurrent statistical machine translation systemsparallel corpus: lots of sentences from a language to another.Source language, e.g. FrenchTarget languag...
2019-07-05 21:27:43 188
原创 CS224N notes_chapter8_RNN & LM
第八讲 RNN & LMLanguage ModelA language model computes a probability for sequence of words: P(w1,w2,...,wT)P(w_1,w_2,...,w_T)P(w1,w2,...,wT)Useful for machine translationWord ordering: p(the...
2019-07-05 17:39:08 125
原创 CS224N notes_chapter6_syntax grammar and dependency parsing
第六讲 syntax grammar and dependency parsing#我是真没咋看懂这一讲1. Syntactic Structure: Consistency and DependencyConstituency = phrase structure grammar = context-free grammars(CFGs)Phrase structure organize...
2019-07-04 20:25:07 193
原创 CS224N notes_chapter5_Backpropagation
第五讲 BackpropagationFrom one-layer NN to multi layer NN2 layer case.x=z(1)=a(1)z(2)=W(1)x+b(1)a(2)=f(z(2))z(3)=W(2)a(2)+b(2)a(3)=f(z(3))s=UTa(3)\begin{aligned}x =& z^{(1)} = a^{(1)} \\z^{...
2019-07-03 16:47:27 109
原创 CS224N notes_chapter4_Word window classification and Neural Network
第四讲 word window分类与神经网络Classification backgroundnotationsinput: xix_ixi, words/context windows/sentences/doc.etcoutput: yiy_iyi, labels such as sentiment/NER/other words.etci=1,2,…,N#为了方便, 笔者接下...
2019-07-02 19:26:43 159
原创 CS224N notes_chapter3_Deeper Look at Word Vectors
第三讲 Deeper Look at Word VectorsNegtive SamplingFirstly, we need to review the Skip-gramp(wt+j∣wt)=exp(uoTvc)∑w=1Vexp(uwTvc)p(w_{t+j}|w_t)= \frac{exp(u_o^Tv_c)}{\sum_{w=1}^V exp(u_w^Tv_c)}p(wt+j...
2019-07-01 20:48:05 175
原创 CS224N notes_chapter2_word2vec
第二讲 word2vec1 Word meaningthe idea that is represented by a word, phrase, writing, art etc.How do we have usable meaning in a computer?Common answer: toxonomy(分类系统) like WordNet that has hypernyms...
2019-07-01 15:07:16 194
原创 西瓜书_chapter11_特征选择与稀疏学习
11.1 子集搜索与评价如果我们想从特征集合中选区一个包含了所有重要信息的特征子集,如果我们没有任何先验知识,那么就只能遍历可能的子集,这会带来很高的计算复杂度;可行的一种做法是先产生一个“候选子集",评价它的好坏,然后在此基础之上产生下一个子集。这里涉及到两个关键环节,一是如何根据评价结果选择下一个候选子集,二是如何评价子集的好坏。第一个环节是子集搜索,...
2019-06-30 02:43:36 338
原创 西瓜书_chapter10_降维与度量学习
10.1 k近邻学习(kNN)给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后根据这k个邻居的信息进行预测与前边的学习方法相比,kNN没有显式的训练过程,只有拿到测试样本以后才进行处理,我们将其称为懒惰学习(lazy learning),而哪些再训练阶段就对样本进行处理的方法叫做急切学习(eager learning)给定测试样本xxx,若其最近邻样本为zzz,则最近...
2019-06-29 04:20:50 420
原创 西瓜书_chapter9_聚类
9.1 聚类任务在无监督学习中,训练样本的标记信息是未知的,目标是通过对无标记样本的学习来揭示数据的内在性质及规律。本章中,我们探索其中常用的“聚类"算法。它的目的是把数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个簇(cluster)。聚类既能作为一个独立的过程,去探索数据之间的内在联系,也可以作为分类等其他学习任务的前驱过程.9.2 性能度量聚类性能度量也叫做聚类“有效...
2019-06-28 01:48:14 427
原创 西瓜书_chapter8_集成学习
8.1 个体与集成集成学习通过构建并结合多个学习器来完成学习任务。集成学习一般先产生一组个体学习器,再用某种策略把它们结合起来。如果集成中只包含同类型的个体学习器,则称为同质的,反之称为异质的。集成学习通过将多个学习器进行结合,常常可以获得比单一学习器更好的性能,这对于弱学习器尤为明显。要获得好的集成,我们需要让每个分类器“好而不同”,即个体学习器之间要有一定的准确性,并且不同学习器之间要有...
2019-06-26 01:40:33 323
原创 西瓜书_chapter7_贝叶斯分类器
7.1 贝叶斯决策论对于分类任务,贝叶斯决策论是在所有相关概率都已知的理想情形下,考虑如何基于概率和误判损失来选择最优的类别标记。假设有N种可能的类别标记,即Y={c1,c2,...,cN}Y=\{c_1,c_2,...,c_N\}Y={c1,c2,...,cN},λij\lambda_{ij}λij是将一个真实标记为cjc_jcj的样本误分类为cic_ici所产生的损失,那么我们...
2019-06-22 20:53:16 278
原创 西瓜书_chapter4_决策树
4.1 基本概念决策树的生成是一个递归的过程,在几种条件下会被终止,一是当前结点下的类别都一样,二是现有属性不能对剩下的样本进行区分,三是当前结点下没有样本。4.2 划分选择这一节研究的问题是如何选取上图中第8行的属性4.2.1 信息增益一种方法是依据信息熵来对某一属性的各个取值的纯度进行度量。对于一个样本集合DDD,其中第k类样本所占的比例是pkp_kpk,则信息熵的定义为Ent...
2019-06-19 01:37:55 287
原创 西瓜书_chapter3_线性模型
3.1 基本形式f(x)=ω1x1+ω2x2+...+ωdxd+bf(x)=\omega_1 x_1 + \omega_2 x_2+... +\omega_dx_d+bf(x)=ω1x1+ω2x2+...+ωdxd+b其中,xix_ixi是x在第i个属性上的取值,也可以写成f(x)=ωTx+bf(x)=\omega^Tx+bf(x)=ωTx+b公式中的ω\omegaω比较直观...
2019-06-18 19:43:20 202
原创 今日头条算法实习生三面凉经
月初的时候投了若干家大厂的NLP/ML算法岗位的实习生,只收到了头条的面试邀约,面试表现太差了,收到拒信。写一点东西来整理一下笔试6月6日收到了笔试的邮件,当天就做完了,一共两道题,都很简单。第一道是给出一个数组,数组中有正数和负数,要求重新排列这个数组,使得原始数组中的正负数交替排列,且保证各自的相对顺序不变。第二道题也比较简单,大概描述是这样的我手中有一堆扑克牌, 但是观众不知道它...
2019-06-18 15:44:57 1342
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人