KDD_2018_notes Smoothed Dilated Convolutions for Improved Dense Prediction

本文介绍了KDD 2018一篇关于空洞卷积改进的研究,针对空洞卷积可能导致的网格状态问题,提出两种方法:Groups Interaction Layers和Separable and Shared Convolutions,旨在利用采样结果的关联性提高密集预测的性能。实验结果显示提升有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

笔者重温了机器学习相关的一些算法后,打算来看一些数据挖掘领域的论文,会写一些笔记来记录。先从KDD 2018入手。
本文要介绍的是一个空洞卷积(Dilated Convolutions)的改进方法。

空洞卷积存在的问题

对于空洞卷积来讲,卷积后的 feature map 中,相邻两个 pixel 来自于上一层 feature map 中完全不同的两组点,因而很容易造成网格状态
在这里插入图片描述

论文给出的改进方法

空洞卷积分解

原文认为,空洞卷积存在这样的问题是由于其没有考虑到卷积前的 feature map 中相邻像素的关联性与一致性。
我们先将空洞卷积进行分解,它等价于下图的过程在这里插入图片描述

空洞卷积被分解为了3个步骤:

  1. 周期采样。采样次数取决于 dilation rate r r r,最终产出 r d r^d rd 个采样后的结果,其中 d d d表示输入尺寸的维度
  2. 共享卷积。对采样得到的 feature map, 我们用相同的卷积核分别对它们进行卷积
  3. 重新交织。对卷积后得到的结果,我们再重新将它们交织在一起,得到最终结果

#直接看上图比较好,直观得多
原文提出了两种改进方法,核心思想都是要利用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值