前言
笔者重温了机器学习相关的一些算法后,打算来看一些数据挖掘领域的论文,会写一些笔记来记录。先从KDD 2018入手。
本文要介绍的是一个空洞卷积(Dilated Convolutions)的改进方法。
空洞卷积存在的问题
对于空洞卷积来讲,卷积后的 feature map 中,相邻两个 pixel 来自于上一层 feature map 中完全不同的两组点,因而很容易造成网格状态
论文给出的改进方法
空洞卷积分解
原文认为,空洞卷积存在这样的问题是由于其没有考虑到卷积前的 feature map 中相邻像素的关联性与一致性。
我们先将空洞卷积进行分解,它等价于下图的过程
空洞卷积被分解为了3个步骤:
- 周期采样。采样次数取决于 dilation rate r r r,最终产出 r d r^d rd 个采样后的结果,其中 d d d表示输入尺寸的维度
- 共享卷积。对采样得到的 feature map, 我们用相同的卷积核分别对它们进行卷积
- 重新交织。对卷积后得到的结果,我们再重新将它们交织在一起,得到最终结果
#直接看上图比较好,直观得多
原文提出了两种改进方法,核心思想都是要利用