KDD_2018_notes Smoothed Dilated Convolutions for Improved Dense Prediction

本文介绍了KDD 2018一篇关于空洞卷积改进的研究,针对空洞卷积可能导致的网格状态问题,提出两种方法:Groups Interaction Layers和Separable and Shared Convolutions,旨在利用采样结果的关联性提高密集预测的性能。实验结果显示提升有限。
摘要由CSDN通过智能技术生成

前言

笔者重温了机器学习相关的一些算法后,打算来看一些数据挖掘领域的论文,会写一些笔记来记录。先从KDD 2018入手。
本文要介绍的是一个空洞卷积(Dilated Convolutions)的改进方法。

空洞卷积存在的问题

对于空洞卷积来讲,卷积后的 feature map 中,相邻两个 pixel 来自于上一层 feature map 中完全不同的两组点,因而很容易造成网格状态
在这里插入图片描述

论文给出的改进方法

空洞卷积分解

原文认为,空洞卷积存在这样的问题是由于其没有考虑到卷积前的 feature map 中相邻像素的关联性与一致性。
我们先将空洞卷积进行分解,它等价于下图的过程在这里插入图片描述

空洞卷积被分解为了3个步骤:

  1. 周期采样。采样次数取决于 dilation rate r r r,最终产出 r d r^d rd 个采样后的结果,其中 d d d表示输入尺寸的维度
  2. 共享卷积。对采样得到的 feature map, 我们用相同的卷积核分别对它们进行卷积
  3. 重新交织。对卷积后得到的结果,我们再重新将它们交织在一起,得到最终结果

#直接看上图比较好,直观得多
原文提出了两种改进方法,核心思想都是要利用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值