Python:正态分布(Gaussian Distribution) 的技术指南

📈 1、简述

在数据分析与机器学习中,正态分布(Gaussian Distribution) 是最重要、最常见的概率分布之一。
本文将系统介绍它的数学原理、在 Python 中的实现方式,以及如何使用可视化与实战代码帮助理解与应用。

在这里插入图片描述


📊 2、什么是正态分布?

正态分布是一种连续型概率分布,具有如下特性:

  • 分布图像为钟形对称曲线
  • 中心峰值对应均值(mean)
  • 分布受标准差(std)控制

又称 高斯分布(Gaussian Distribution)

📌 常见于身高、考试成绩、误差分布、测量噪声等自然现象。

1️⃣ 数学公式

概率密度函数(PDF)公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

拾荒的小海螺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值