目录
题目一
给定一个整数数组 nums
和一个目标值 target
,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。
你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
我的解答(暴力法,时间复杂度:O(n^2),空间复杂度:O(1))
class Solution {
public int[] twoSum(int[] nums, int target) {
for(int i = 0; i < nums.length; i++){
for(int j = i + 1; j < nums.length; j++){
if(nums[i] + nums[j] == target){
return new int[]{i, j};
}
}
}
return null;
}
}
官方解答(一遍哈希表,时间复杂度:O(n),空间复杂度:O(n))
class Solution {
public int[] twoSum(int[] nums, int target) {
Map<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int complement = target - nums[i];
if (map.containsKey(complement)) {
return new int[] { map.get(complement), i };
}
map.put(nums[i], i);
}
return null;
}
}
总结:我的解法题目是做出来了,但非常暴力,一点都不优雅,跟官方给的答案差的不是一点半点,我的解法执行用时81ms,而官方的只需9 ms。没能想到使用Map的特性来解决这道题,对线性表、哈希表等的使用还是不够熟练。
题目二
给出两个 非空 的链表用来表示两个非负的整数。其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字。如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和。
您可以假设除了数字 0 之外,这两个数都不会以 0 开头。
示例:
输入:(2 -> 4 -> 3) + (5 -> 6 -> 4) 输出:7 -> 0 -> 8 原因:342 + 465 = 807
官方解答
思路
我们使用变量来跟踪进位,并从包含最低有效位的表头开始模拟逐位相加的过程。
图1,对两数相加方法的可视化: 342 + 465 = 807, 每个结点都包含一个数字,并且数字按位逆序存储。
算法
就像你在纸上计算两个数字的和那样,我们首先从最低有效位也就是列表 l1 和 l2 的表头开始相加。由于每位数字都应当处于 0…9 的范围内,我们计算两个数字的和时可能会出现“溢出”。例如,5 + 7 = 12。在这种情况下,我们会将当前位的数值设置为 2,并将进位 carry = 1 带入下一次迭代。进位 carry 必定是 0 或 1,这是因为两个数字相加(考虑到进位)可能出现的最大和为 9 + 9 + 1 = 19。
伪代码如下:
- 将当前结点初始化为返回列表的哑结点。
- 将进位 carry 初始化为 0。
- 将 p 和 q 分别初始化为列表 l1 和 l2 的头部。
- 遍历列表 l1 和 l2 直至到达它们的尾端。
- 将 x 设为结点 p 的值。如果 p 已经到达 l1 的末尾,则将其值设置为 0。
- 将 y 设为结点 q 的值。如果 q 已经到达 l2 的末尾,则将其值设置为 0。
- 设定 sum = x + y + carry。
- 更新进位的值,carry = sum / 10。
- 创建一个数值为 (sum mod 10) 的新结点,并将其设置为当前结点的下一个结点,然后将当前结点前进到下一个结点。
- 同时,将 p 和 q 前进到下一个结点。
- 检查 carry = 1 是否成立,如果成立,则向返回列表追加一个含有数字 1 的新结点。
- 返回哑结点的下一个结点。
请注意,我们使用哑结点来简化代码。如果没有哑结点,则必须编写额外的条件语句来初始化表头的值。
请特别注意以下情况:
测试用例 | 说明 |
---|---|
l1=[0,1] l2=[0,1,2] | 当一个列表比另一个列表长时。 |
l1=[] l2=[0,1] | 当一个列表为空时,即出现空列表。 |
l1=[9,9] l2=[1] | 求和运算最后可能出现额外的进位,这一点很容易被遗忘 |
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
ListNode dummyHead = new ListNode(0);
ListNode p = l1, q = l2, curr = dummyHead;
int carry = 0;
while (p != null || q != null) {
int x = (p != null) ? p.val : 0;
int y = (q != null) ? q.val : 0;
int sum = carry + x + y;
carry = sum / 10;
curr.next = new ListNode(sum % 10);
curr = curr.next;
if (p != null) p = p.next;
if (q != null) q = q.next;
}
if (carry > 0) {
curr.next = new ListNode(carry);
}
return dummyHead.next;
}
}
复杂度分析
- 时间复杂度:O(max(m, n)),假设 m 和 n 分别表示 l1 和 l2 的长度,上面的算法最多重复 max(m, n) 次。
- 空间复杂度:O(max(m, n)), 新列表的长度最多为 max(m,n) + 1。
总结:这道题我没能成功解答出来?。我看到题目第一时间想到的解法是把两个链表的值分别算出来再相加,算出和之后再分割保存到链表。但实际动起手来发现无法用代码实现,最后没办法只能看了官方答案。官方的是从另外一个思路解决的,做算法题就像以前做数学题一样,一道题可能有多种解答方法,要考虑哪种能用代码实现,哪种才是最优的。