svm算法 最通俗易懂讲解

  最近在学习svm算法,借此文章记录自己的学习过程,在学习很多处借鉴了z老师的讲义和李航的统计,若有不足的地方,请海涵;svm算法通俗的理解在二维上,就是找一分割线把两类分开,问题是如下图三条颜色都可以把点和星划开,但哪条线是最优的呢,这就是我们要考虑的问题;



首先我们先假设一条直线为 W•X+b =0 为最优的分割线,把两类分开如下图所示,那我们就要解决的是怎么获取这条最优直线呢?及W 和 b 的值;在SVM中最优分割面(超平面)就是:能使支持向量和超平面最小距离的最大值

我们的目标是寻找一个超平面,使得离超平面比较近的点能有更大的间距。也就是我们不考虑所有的点都必须远离超平面,我们关心求得的超平面能够让所有点中离它最近的点具有最大间距。


如上面假设蓝色的星星类有5个样本,并设定此类样本标记为Y =1,紫色圈类有5个样本,并设定此类标记为 Y =-1,共 T ={(X₁ ,Y₁) , (X₂,Y₂) (X₃,Y₃) .........} 10个样本,超平面(分割线)为wx+b=0;  样本点到超平面的几何距离为:

    

        此处要说明一下:函数距离和几何距离的关系;定义上把 样本| w▪x₁+b|的距离叫做函数距离,而上面公式为几何距离,你会发现当w 和b 同倍数增加时候,函数距离也会通倍数增加;简单个例子就是,样本 X₁ 到 2wX₁+2b =0的函数距离是wX₁ +b =0的函数距离的 2倍;而几何矩阵不变;

        下面我们就要谈谈怎么获取超平面了?!

超平面就是满足支持向量到其最小距离最大,及是求:max [支持向量到超平面的最小距离] ;那只要算出支持向量到超平面的距离就可以了吧 ,而支持向量到超平面的最小距离可以表示如下公式:


故最终优化的的公式为:


 根据函数距离和几何距离可以得知,w和b增加时候,几何距离不变,故怎能通过同倍数增加w和 b使的支持向量(距离超平面最近的样本点)上样本代入 y(w*x+b) =1,而不影响上面公式的优化,样本点距离如下:如上图其r1函数距离为1,k1函数距离为1,而其它

样本点的函数距离大于1,及是:y(w•x+b)>=1,把此条件代入上面优化公式候,可以获取新的优化公式1-3:



公式1-3见下方:优化最大化分数,转化为优化最小化分母,为了优化方便转化为公式1-4



为了优化上面公式,使用拉格朗日公式和KTT条件优化公式转化为:


对于上面的优化公式在此说明一下:比如我们的目标问题是 minf(x) 。可以构造函数 L(a,b,x)


L(a,b,x)=f(x)+ag(x)+bh(x)a0

此时 f(x) maxa,bL(a,b,x) 是等价的。因为 h(x)=0,g(x)0,ag(x)0 ,所以只有在 ag(x)=0 的情况下

L(a,b,x) 才能取得最大值,因此我们的目标函数可以写为 minxmaxa,bL(a,b,x) 。如果用对偶表达式: maxa,bminxL(a,b,x)

由于我们的优化是满足强对偶的(强对偶就是说对偶式子的最优值是等于原问题的最优值的),所以在取得最优值 x 的条件下,它满足 :

f(x)=maxa,bminxL(a,b,x)=minxmaxa,bL(a,b,x)=f(x)


结合上面的一度的对偶说明故我们的优化函数如下面,其中a >0


现在的优化方案到上面了,先求最小值,对 w 和 b 分别求偏导可以获取如下公式:



把上式获取的参数代入公式优化max值:


化解到最后一步,就可以获取最优的a值:




以上就可以获取超平面!

但在正常情况下可能存在一些特异点,将这些特异点去掉后,剩下的大部分点都能线性可分的,有些点线性不可以分,意味着此点的函数距离不是大于等于1,而是小于1的,为了解决这个问题,我们引进了松弛变量 ε>=0; 这样约束条件就会变成为:


故原先的优化函数变为:


对加入松弛变量后有几点说明如下图所以;距离小于1的样本点离超平面的距离为d ,在绿线和超平面之间的样本点都是由损失的,

其损失变量和距离d 的关系,可以看出 ξ = 1-d , 当d >1的时候会发现ξ =0,当 d<1 的时候 ξ = 1-d ;故可以画出损失函数图,如下图1-7;样式就像翻书一样,我们把这个损失函数叫做 hinge损失;



下面我们简单的就来讨论一下核函数:核函数的作用其实很简单就是把低维映射到高维中,便于分类。核函数有高斯核等,下面就直接上图看参数对模型的影响,从下图可以了解,当C变化时候,容错变小,泛化能力变小;当选择高斯核函数的时候,随时R参数调大,准确高提高,最终有过拟合风险;


下面就直接上代码了(鸢尾花SVM二特征分类)

iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度'


if __name__ == "__main__":
    path = 'iris.data'  # 数据文件路径
    data = pd.read_csv(path, header=None)
    x, y = data[range(4)], data[4]
    y = pd.Categorical(y).codes
    x = x[[0, 1]]
    x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6)

    # 分类器
    clf = svm.SVC(C=0.3, kernel='linear', decision_function_shape='ovo')
    clf.fit(x_train, y_train.ravel())

    # 准确率
    print clf.score(x_train, y_train)  # 精度
    print '训练集准确率:', accuracy_score(y_train, clf.predict(x_train))
    print clf.score(x_test, y_test)
    print '测试集准确率:', accuracy_score(y_test, clf.predict(x_test))
    x1_min, x2_min = x.min()
    x1_max, x2_max = x.max()
    x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j]  # 生成网格采样点
    grid_test = np.stack((x1.flat, x2.flat), axis=1)  # 测试点

    print 'grid_test = \n', grid_test
    Z = clf.decision_function(grid_test)
    Z = Z[:,0].reshape(x1.shape)
    print "decision_function:",Z
    grid_hat = clf.predict(grid_test)
    grid_hat = grid_hat.reshape(x1.shape)
    mpl.rcParams['font.sans-serif'] = [u'SimHei']
    mpl.rcParams['axes.unicode_minus'] = False

    cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
    cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
    plt.figure(facecolor='w')
    plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
    plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark)      # 样本
    plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10)     # 圈中测试集样本
    plt.xlabel(iris_feature[0], fontsize=13)
    plt.ylabel(iris_feature[1], fontsize=13)
    plt.xlim(x1_min, x1_max)
    plt.ylim(x2_min, x2_max)
    plt.title(u'鸢尾花SVM二特征分类', fontsize=16)
    plt.grid(b=True, ls=':')
    plt.show()
最后画图如下:














  • 68
    点赞
  • 479
    收藏
    觉得还不错? 一键收藏
  • 15
    评论
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,常用于分类和回归问题。其原理相对来说较为复杂,但可以通过以下通俗易懂的方式进行解释: SVM的基本思想是找到一个最佳的超平面将不同类别的数据完全分开。换句话说,我们要找到一个决策边界,使得属于某一类的样本点都在一个侧面,而属于另一类的样本点则在另一侧面。 为了找到这个最佳的超平面,SVM引入了支持向量的概念。支持向量是离决策边界最近的那些样本点,它们对于决策边界的确定起到关键作用。这些支持向量点到决策边界的距离被称为间隔,我们的目标是找到最大化间隔的决策边界。 但是,在实际问题中,数据往往无法完全线性分开。为解决这个问题,SVM引入了核函数的概念。核函数将数据从原始空间映射到更高维的特征空间,在特征空间中,原本线性不可分的问题可能变得线性可分。 基于核函数的SVM即通过在特征空间中寻找最佳的超平面来解决非线性问题。通过设置不同的核函数,我们可以将数据映射到不同的特征空间,并得到不同的决策边界。 SVM的训练过程可以通过求解一个凸优化问题来实现。优化问题的目标是最大化间隔,同时要求决策边界的分类结果尽量准确。通过使用相关的数学方法,可以求解出最优的超平面以及对应的支持向量。 总之,SVM是一种通过找到最佳的超平面来实现分类的机器学习算法。它的原理简单概括为找到一条决策边界,使得离这条边界最近的样本点都被正确分类,并且间隔最大化。通过引入核函数,SVM也可以解决非线性分类问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值