svm算法

SVM是一种监督学习算法,用于分类和回归,寻找最大化间隔的超平面将数据分为两类。与KNN不同,SVM通过核函数解决线性不可分问题,且在高维数据处理上表现优秀。其主要特点包括模型训练和直接预测,以及对样本的高效处理。

svm分类算法

介绍

support Vector Machine (支持向量机) 是一个监督学习算法,既可以用于分类(主要)也可以用于回归问题。SVM算法中,我们将数据绘制在n维空间中(n代表数据的特征数),然后查找可以将数据分成两类的超平面。支持向量指的是观察的样本在n为空间中的坐标,SVM是将样本分成两类的最佳超平面。
将两类点分开,svm将会寻找可以区分两个类别并且能使间隔(margin)最大的划分超平面,margin是两个虚线到超平面的距离之和,margin越大,鲁棒性越强在这里插入图片描述
当在二维平面上遇到不好分类的情况,就转化到更高的维度上来分类,在高纬度上找超平面,
在这里插入图片描述
从低纬度到高纬度上,计算复杂,需要一定的计算能力,我们可以通过核技巧来达到相似的效果而不需要向高纬度转化。
核函数具有将低维数据转化成高维数据的作用,从而具有将线性不可分问题转化为线性可分问题的作用。

原理

在这里插入图片描述

划分超平面可以定义为一个线性方程:wTX+b=0wTX+b=0wT:w ^T X + b = 0 w^TX+b=0w T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值