# 非线性优化-matlab函数库-optimset

options = optimset('param1',value1,'param2',value2,...) %设置所有参数及其值，未设置的为默认值

options = optimset(optimfun)                                        %设置与最优化函数有关的参数为默认
options = optimset(oldopts,'param1',value1,...)             %复制一个已存在的选项，修改特定项
options = optimset(oldopts,newopts)                            %用另一个新选项合并目前选项因素

 Parameter Value Description Display 'off' | 'iter' | 'final' | 'notify' 'off' 表示不显示输出; 'iter' 显示每次迭代的结果; 'final' 只显示最终结果; 'notify' 只在函数不收敛的时候显示结果. MaxFunEvals positive integer 函數求值運算（Function Evaluation）的最高次數 MaxIter positive integer 最大疊代次數. TolFun positive scalar 函数迭代的终止误差. TolX positive scalar 结束迭代的X值.

L - 只用于大规模数据拟合
M - 中等规模
B - 两者都可以
 Parameter Name Description L, M, B Used by Functions DerivativeCheck Compare user-supplied analytic derivatives (gradients or Jacobian) to finite differencing derivatives. M Diagnostics Print diagnostic information about the function to be minimized or solved. B All but fminbnd,fminsearch, fzero, andlsqnonneg DiffMaxChange Maximum change in variables for finite difference derivatives. M DiffMinChange Minimum change in variables for finite difference derivatives. M Display Level of display. 'off' displays no output; 'iter' displays output at each iteration; 'final' displays just the final output; 'notify' displays output only if function does not converge. B All. See the individual function reference pages for the values that apply. GoalsExactAchieve Number of goals to achieve exactly (do not over- or underachieve). M GradConstr Gradients for the nonlinear constraints defined by the user. M GradObj Gradient(s) for the objective function(s) defined by the user. B Hessian If 'on', function uses user-defined Hessian, or Hessian information (when using HessMult), for the objective function. If 'off', function approximates the Hessian using finite differences. L HessMult Hessian multiply function defined by the user. L HessPattern Sparsity pattern of the Hessian for finite differencing. The size of the matrix is n-by-n, where n is the number of elements in x0, the starting point. L HessUpdate Quasi-Newton updating scheme. M Jacobian If 'on', function uses user-defined Jacobian, or Jacobian information (when using JacobMult), for the objective function. If 'off', function approximates the Jacobian using finite differences. B JacobMult Jacobian multiply function defined by the user. L JacobPattern Sparsity pattern of the Jacobian for finite differencing. The size of the matrix is m-by-n, where m is the number of values in the first argument returned by the user-specified function fun, and n is the number of elements in x0, the starting point. L LargeScale Use large-scale algorithm if possible. B LevenbergMarquardt Chooses Levenberg-Marquardt over Gauss-Newton algorithm. M LineSearchType Line search algorithm choice. M MaxFunEvals Maximum number of function evaluations allowed. B MaxIter Maximum number of iterations allowed. B All but fzero andlsqnonneg MaxPCGIter Maximum number of PCG iterations allowed. L MeritFunction Use goal attainment/minimax merit function (multiobjective) vs. fmincon (single objective). M MinAbsMax Number of F(x) to minimize the worst case absolute values M NonlEqnAlgorithm Choose Levenberg-Marquardt or Gauss-Newton over the trust-region dogleg algorithm. M PrecondBandWidth Upper bandwidth of preconditioner for PCG. L TolCon Termination tolerance on the constraint violation. B TolFun Termination tolerance on the function value. B fgoalattain, fmincon,fminimax, fminsearch,fminunc, fseminf, fsolve,linprog (large-scale only),lsqcurvefit, lsqlin (large-scale only), lsqnonlin,quadprog (large-scale only) TolPCG Termination tolerance on the PCG iteration. L TolX Termination tolerance on x. B All functions except the medium-scale algorithms forlinprog, lsqlin, and quadprog TypicalX Typical x values. The length of the vector is equal to the number of elements in x0, the starting point. L

Examples

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options, changing the value of the TolX parameter and storing new values in optnew.

·                optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure that contains all the parameter names and default values relevant to the function fminbnd.

·                optimset('fminbnd')

03-19  08-24 999
03-17 314
08-03 1万+
11-17 417
11-05 2892
03-09 334
03-16 655
03-16 501
03-17 187
05-04 1789
03-17 369
11-29 1万+
12-12 8816
11-01 6万+
03-03 2万+ 点击重新获取   扫码支付  余额充值