topcoder 上的一道1000分题解答


Problem Statement
????
You are given a set A of integers and a positive integer n. You must find positive integers x, y and z such that their product is as close to n as possible (minimize |n - x * y * z|), and none of them belongs to A. If there are several such triples, find the one with the smallest x. If there are still several such triples, minimize y. If there is still a tie, minimize z.
You are given the elements of A as a vector <int> a. Return a vector <int> with exactly three elements: x, y and z, in this order.
Definition
????
Class:
AvoidingProduct
Method:
getTriple
Parameters:
vector <int>, int
Returns:
vector <int>
Method signature:
vector <int> getTriple(vector <int> a, int n)
(be sure your method is public)
????

Constraints
-
a will contain between 0 and 50 elements, inclusive.
-
Each element of a will be between 1 and 1000, inclusive.
-
All elements of a will be distinct.
-
n will be between 1 and 1000, inclusive.
Examples
0)

????
{2,4}
4
Returns: {1, 1, 3 }
You can get 3=1*1*3 and 5=1*1*5. 3 is better.
1)

????
{1}
10
Returns: {2, 2, 2 }

2)

????
{1,2}
10
Returns: {3, 3, 3 }

3)

????
{1,3}
12
Returns: {2, 2, 2 }

4)

????
{1,3}
13
Returns: {2, 2, 4 }

5)

????
{1,15}
90
Returns: {2, 5, 9 }

第一次做1000分题目,花了三个小时,大汗淋漓......

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.
#include<iostream>
#include<vector>
#include<cmath>
#include<algorithm>
#include <iterator>
using namespace std;

class AvoidingProduct
{
 public:
   bool noFound(vector <int>b,int m)
  {
    bool flag=true;
    for(int i=0;i<b.size();i++)
   {
    if (b.at(i)==m)
    {
     flag =false;
     break;
    }
   }
  return flag;
  }
 vector <int> getTriple(vector <int> a, int n)
 {
  long min=1000000000;

  vector <int> re;

  for(int x=1;x<n;x++)
   {
    if(noFound(a,x))
   {
    for(int y=1;y<n;y++)
    {
    if (noFound(a,y))
    {
    
     for(int z=1;z<n;z++)
     {
       if (noFound(a,z))
       {
        int temp=abs(x*y*z-n);
        if(temp<min)
       {
       min=temp;
       re.clear();
       re.push_back(x);
       re.push_back(y);
       re.push_back(z);
       }
       if(temp==min)
       {
        if (re.size()==0)
        {
          re.clear();
          re.push_back(x);
         re.push_back(y);
         re.push_back(z);
       }
       else
       {
        int count1=100*re.at(0)+10*re.at(1)+re.at(2);
        int count2=100*x+10*y+z;
        if (count1>count2)
        {
         re.clear();
          re.push_back(x);
         re.push_back(y);
         re.push_back(z);
        }
       };
        
       }
      // if(temp>min) break;
      }
    
     }
    }
    }
    }
    }
    return re;
}
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值