# 中国剩余定理

x1=105/3=35 x 1 = 105 / 3 = 35 $x1=105/3=35$, x2=105/5=21 x 2 = 105 / 5 = 21 $x2=105/5=21$, x3=105/7=15 x 3 = 105 / 7 = 15 $x3=105/7=15$

ax1%3=1 a ∗ x 1 % 3 = 1 $a*x1 \% 3 = 1$, bx2%5=1 b ∗ x 2 % 5 = 1 $b*x2 \% 5 =1$, cx3%7=1 c ∗ x 3 % 7 = 1 $c*x3 \% 7=1$

a=2,b=1,c=1。

ans=(ax12+bx23+cx32)%lcm=23 a n s = ( a ∗ x 1 ∗ 2 + b ∗ x 2 ∗ 3 + c ∗ x 3 ∗ 2 ) % l c m = 23 $ans=(a*x1*2+b*x2*3+c*x3*2) \% lcm=23$

#include<iostream>
#include<cstdio>
#include<climits>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m[105],a[105],lcm=1;
int exgcd(int a,int b,int &x,int &y){//扩欧
if(!b){x=1,y=0;return a;}
int re=exgcd(b,a%b,x,y),tmp=x;
x=y,y=tmp-(a/b)*y;
return re;
}
int work(){
int i,j,d,x,y,re=0;
for(i=1;i<=n;i++)lcm=lcm*m[i];//因为互质所以直接这么写了
for(i=1;i<=n;i++){
int kl=lcm/m[i];
d=exgcd(kl,m[i],x,y);
x=(x%m[i]+m[i])%m[i];
re=(re+a[i]*x*kl)%lcm;
}
return re;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d",&m[i],&a[i]);;
printf("%d",work());
return 0;
}

# 扩展中国剩余定理

x=a1x1+b1 x = a 1 ∗ x 1 + b 1 $x=a_1*x_1+b_1$
x=a2x2+b2 x = a 2 ∗ x 2 + b 2 $x=a_2*x_2+b_2$
a1 a 1 $a_1$, a2 a 2 $a_2$是模数， b1 b 1 $b_1$, b2 b 2 $b_2$是余数。

a1x1+b1=a2x2+b2 a 1 ∗ x 1 + b 1 = a 2 ∗ x 2 + b 2 $a_1*x_1+b_1=a_2*x_2+b_2$，由于 x1 x 1 $x_1$ x2 x 2 $x_2$可以取负无穷到正无穷，所以符号不能约束它们，我们随便变一变形得到： a1x1+a2x2=b2b1 a 1 ∗ x 1 + a 2 ∗ x 2 = b 2 − b 1 $a_1*x_1+a_2*x_2=b_2-b_1$

xk(modlcm(a1,a2)) x ≡ k ( mod l c m ( a 1 , a 2 ) ) $x≡k \pmod {lcm(a_1,a_2)}$

#include<iostream>
#include<cstdio>
#include<climits>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
const int maxn=1e5+5;
int n;
LL exgcd(LL a,LL b,LL &x,LL &y){
if(!b){x=1,y=0;return a;}
LL re=exgcd(b,a%b,x,y),tmp=x;
x=y,y=tmp-(a/b)*y;
return re;
}
LL m[maxn],a[maxn];
LL work(){
LL M=m[1],A=a[1],t,d,x,y;int i;
for(i=2;i<=n;i++){
d=exgcd(M,m[i],x,y);//解方程
if((a[i]-A)%d)return -1;//无解
x*=(a[i]-A)/d,t=m[i]/d,x=(x%t+t)%t;//求x
A=M*x+A,M=M/d*m[i],A%=M;//日常膜一膜（划掉）模一模，防止爆
}
A=(A%M+M)%M;
return A;
}
int main()
{
int i,j;
while(scanf("%d",&n)!=EOF){
for(i=1;i<=n;i++)scanf("%lld%lld",&m[i],&a[i]);
printf("%lld\n",work());
}
return 0;
}
• 点赞 14
• 评论 6
• 分享
x

海报分享

扫一扫，分享海报

• 收藏 5
• 手机看

分享到微信朋友圈

x

扫一扫，手机阅读

• 打赏

打赏

litble

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文
10-26 7811

08-17 123
01-21 116
08-06 200
06-21 436
08-17 2万+
03-17 4248
01-27 473
05-07 1万+