# 组合数通项公式

${C}_{m}^{n}=\frac{m!}{n!\ast \left(m-n\right)!}$

# 组合数递推公式

${C}_{m}^{n}={C}_{m-1}^{n}+{C}_{m-1}^{n-1}$

# 性质1

${C}_{m}^{n}={C}_{m}^{m-n}$

# 性质2

${C}_{m+r+1}^{r}=\sum _{i=0}^{r}{C}_{m+i}^{i}$

${C}_{m}^{0}+{C}_{m+1}^{1}+{C}_{m+2}^{2}+...+{C}_{m+r}^{r}$$C_m^0+C_{m+1}^1+C_{m+2}^2+...+C_{m+r}^r$=
${C}_{m}^{1}+{C}_{m+1}^{1}+{C}_{m+2}^{2}+...+{C}_{m+r}^{r}$$C_m^1+C_{m+1}^1+C_{m+2}^2+...+C_{m+r}^r$=
${C}_{m+2}^{1}+{C}_{m+2}^{2}+...+{C}_{m+r}^{r}$$C_{m+2}^1+C_{m+2}^2+...+C_{m+r}^r$=
${C}_{m+r+1}^{r}$$C_{m+r+1}^r$

# 性质3

${C}_{m}^{n}\ast {C}_{n}^{r}={C}_{m}^{r}\ast {C}_{m-r}^{n-r}$

${C}_{m}^{n}\ast {C}_{n}^{r}=$$C_m^n*C_n^r=$
$\frac{m!}{n!\left(m-n\right)!}\ast \frac{n!}{r!\left(n-r\right)!}=$$\frac{m!}{n!(m-n)!}*\frac{n!}{r!(n-r)!}=$
$\frac{m!}{r!\left(m-r\right)!}\ast \frac{\left(m-r\right)!}{\left(m-n\right)!\left(n-r\right)!}=$$\frac{m!}{r!(m-r)!}*\frac{(m-r)!}{(m-n)!(n-r)!}=$
${C}_{m}^{r}\ast {C}_{m-r}^{n-r}$$C_m^r*C_{m-r}^{n-r}$

# 性质4（二项式定理）

$\sum _{i=0}^{m}{C}_{m}^{i}={2}^{m}$

$\sum _{i=0}^{m}{C}_{m}^{i}\ast {x}^{i}=\left(x+1{\right)}^{m}$

# 性质5

${C}_{m}^{0}-{C}_{m}^{1}+{C}_{m}^{2}-...±{C}_{m}^{m}=0$

${C}_{m}^{0}-{C}_{m}^{1}+{C}_{m}^{2}-...+{C}_{m}^{m}=$$C_m^0-C_m^1+C_m^2-...+C_m^m=$
${C}_{m-1}^{0}-{C}_{m-1}^{0}-{C}_{m-1}^{1}+{C}_{m-1}^{1}+{C}_{m-1}^{2}-...+{C}_{m-1}^{m-1}=0$$C_{m-1}^0-C_{m-1}^0-C_{m-1}^1+C_{m-1}^1+C_{m-1}^2-...+C_{m-1}^{m-1}=0$

# 性质6

${C}_{m}^{0}+{C}_{m}^{2}+{C}_{m}^{4}...={C}_{m}^{1}+{C}_{m}^{3}+{C}_{m}^{5}+...={2}^{m-1}$

# 性质7

${C}_{m+n}^{r}={C}_{m}^{0}\ast {C}_{n}^{r}+{C}_{m}^{1}\ast {C}_{n}^{r-1}+\dots +{C}_{m}^{r}\ast {C}_{n}^{0}$

${C}_{m+n}^{n}={C}_{m}^{0}\ast {C}_{n}^{0}+{C}_{m}^{1}\ast {C}_{n}^{1}+\dots +{C}_{m}^{m}\ast {C}_{n}^{m}$

# 性质8

$n\ast {C}_{m}^{n}=m\ast {C}_{m-1}^{n-1}$

$n\ast {C}_{m}^{n}=$$n*C_m^n=$
$n\ast \frac{m!}{n!\left(m-n\right)!}=$$n*\frac{m!}{n!(m-n)!}=$
$\frac{m!}{\left(n-1\right)!\left(m-n\right)!}=$$\frac{m!}{(n-1)!(m-n)!}=$
$m\ast \frac{\left(m-1\right)!}{\left(n-1\right)!\left(m-n\right)!}=m\ast {C}_{m-1}^{n-1}$$m*\frac{(m-1)!}{(n-1)!(m-n)!}=m*C_{m-1}^{n-1}$

# 性质9

$\sum _{i=1}^{n}{C}_{n}^{i}\ast i=n\ast {2}^{n-1}$

$\sum _{i=1}^{n}{C}_{n}^{i}\ast i=n\ast {2}^{n-1}=$$\sum_{i=1}^n C_n^i*i=n*2^{n-1}=$
$\sum _{i=1}^{n}\frac{n!}{\left(i-1\right)!\left(n-i\right)!}=$$\sum_{i=1}^n \frac{n!}{(i-1)!(n-i)!}=$
$\left(\sum _{i=1}^{n}\frac{\left(n-1\right)!}{\left(i-1\right)!\left(n-i\right)!}\right)\ast n=$$(\sum_{i=1}^n \frac{(n-1)!}{(i-1)!(n-i)!})*n=$
$\left(\sum _{i=0}^{n-1}{C}_{n}^{i}\right)\ast n=$$(\sum_{i=0}^{n-1} C_n^i)*n=$

$n\ast {2}^{n-1}$$n*2^{n-1}$

# 性质10

$\sum _{i=1}^{n}{C}_{n}^{i}\ast {i}^{2}=n\ast \left(n+1\right)\ast {2}^{n-2}$

$\sum _{i=1}^{n}{C}_{n}^{i}\ast {i}^{2}=$$\sum_{i=1}^n C_n^i*i^2=$

$\left(\sum _{i=0}^{n-1}{C}_{n-1}^{i}\ast \left(i+1\right)\right)\ast n=$$(\sum_{i=0}^{n-1} C_{n-1}^i*(i+1))*n=$
$\left(\sum _{i=0}^{n-1}{C}_{n-1}^{i}\ast i+\sum _{i=0}^{n-1}{C}_{n-1}^{i}\right)\ast n=$$(\sum_{i=0}^{n-1} C_{n-1}^i*i+\sum_{i=0}^{n-1}C_{n-1}^i)*n=$

$\left({2}^{n-2}\ast \left(n-1\right)+{2}^{n-1}\right)\ast n=$$(2^{n-2}*(n-1)+2^{n-1})*n=$

# 性质11

$\sum _{i=0}^{n}\left({C}_{n}^{i}{\right)}^{2}={C}_{2n}^{n}$

# 后记

%%%%%%%%%数王您太强了%%%%%%%%%%%

1.情景假设法（假设boshi从枣树选枣子的方案。。。
2.隔板法（boshi把枣子放成一排，通过在枣子间添加隔板来分组。。。
3.通向公式法
4.递推公式法