特征根法求微分方程的解
一. 关于二阶常系数微分方程的解法
线性齐次方程 a y ′ ′ + b y ′ + c y = 0 a y^{\prime \prime}+b y^{\prime}+c y=0 ay′′+by′+cy=0 的通解
- 解法:
先解特征方程 a r 2 + b r + c = 0 a r^{2}+b r+c=0 ar2+br+c=0 的根. 设特征根为 r 1 , 2 r_{1,2} r1,2 , 分以下两种情况:
-
当 b 2 − 4 a c > 0 b^{2}-4 a c>0 b2−4ac>0 时,特征方程有两个相异的实根 r 1 , 2 = − b ± b 2 − 4 a c 2 a r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} r1,2=2a−b±b2−4ac
方程的通解为 y = C 1 e r 1 x + C 2 e r 2 x y=C_{1} \mathrm{e}^{r_{1} x}+C_{2} \mathrm{e}^{r_{2} x} y=C1er1x+C2er2x . -
当 b 2 − 4 a c = 0 b^{2}-4 a c=0 b2−4ac=0 时,特征方程有重根 r = − b 2 a r=-\frac{b}{2 a} r=−2ab ,
方程的通解为 y = ( C 1 + C 2 x ) e r x y=\left(C_{1}+C_{2} x\right) \mathrm{e}^{r x}