特征根法求微分方程的解

本文介绍了利用特征根法求解二阶常系数微分方程的详细步骤,包括线性齐次方程和非齐次方程的解法,并给出一个具体的例子进行了解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

特征根法求微分方程的解

一. 关于二阶常系数微分方程的解法

线性齐次方程 a y ′ ′ + b y ′ + c y = 0 a y^{\prime \prime}+b y^{\prime}+c y=0 ay+by+cy=0 的通解

  • 解法
    先解特征方程 a r 2 + b r + c = 0 a r^{2}+b r+c=0 ar2+br+c=0 的根. 设特征根为 r 1 , 2 r_{1,2} r1,2 , 分以下两种情况:
  1. b 2 − 4 a c > 0 b^{2}-4 a c>0 b24ac>0 时,特征方程有两个相异的实根 r 1 , 2 = − b ± b 2 − 4 a c 2 a r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} r1,2=2ab±b24ac
    方程的通解为 y = C 1 e r 1 x + C 2 e r 2 x y=C_{1} \mathrm{e}^{r_{1} x}+C_{2} \mathrm{e}^{r_{2} x} y=C1er1x+C2er2x .

  2. b 2 − 4 a c = 0 b^{2}-4 a c=0 b24ac=0 时,特征方程有重根 r = − b 2 a r=-\frac{b}{2 a} r=2ab ,
    方程的通解为 y = ( C 1 + C 2 x ) e r x y=\left(C_{1}+C_{2} x\right) \mathrm{e}^{r x}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值