给定一个未排序的整数数组 nums
,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。
请你设计并实现时间复杂度为 O(n)
的算法解决此问题。
示例 1:
输入:nums = [100,4,200,1,3,2]
输出:4
解释:最长数字连续序列是 [1, 2, 3, 4]。它的长度为 4。
示例 2:
输入:nums = [0,3,7,2,5,8,4,6,0,1] 输出:9
思路:最长,要有最值比较,连续,分为三种情况:1、前挨 ;2、后靠;3、前挨+后靠;
时间复杂度要求 O(n),即一次循环搞定,一次循环的话,由于数字的出现是无序的,那么必须将循环过的数据保存起来,可以将我们遍历过的数据存到集合里,那用什么集合呢,考虑到要统计当前连续的长度,那hashMap就可以了,num[i]作为key,连续长度作为value,然后重点来了,在放入map前如何统计连续长度呢,看前+看后,当前数字的长度等于前长+后长+1,注意:如果当前字段更新了必须将当前连续的首尾的长度也同时更新掉。最后得考虑数组长度为0和数字重复的问题。
代码如下:
public int longestConsecutive(int[] nums) {
if(nums.length==0){
return 0;
}
int max = 1;
Map<Integer, Integer> map = new HashMap();
for (int i = 0; i < nums.length; i++) {
if(map.get(nums[i])!=null){
continue;
}
Integer prev = map.get(nums[i] - 1);
Integer next = map.get(nums[i] + 1);
if (prev == null && next == null) {
map.put(nums[i],1);
} else if (prev != null && next == null) {
map.put(nums[i], prev + 1);
map.put(nums[i] - prev, prev + 1);
} else if (next != null && prev == null) {
map.put(nums[i], next + 1);
map.put(nums[i] + next, next + 1);
} else {
map.put(nums[i], prev + next + 1);
map.put(nums[i] - prev, prev + next + 1);
map.put(nums[i] + next, prev + next + 1);
}
if (map.get(nums[i]) > max) {
max = map.get(nums[i]);
}
}
return max;
}
如有更好的优化建议或者别的更快的算法,欢迎留言讨论。