自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 收藏
  • 关注

原创 深度学习笔记: 最详尽解释Softmax 回归 Softmax Regression

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!Softmax 回归Softmax 回归,也称为多项逻辑回归,是逻辑回归的广义,用于多类分类问题。虽然逻辑回归用于二分类,softmax 回归则用于类别超过两个的情况。Softmax 回归的关键点:多类分类:当因变量可以有两个以上的类别时,使用 softmax

2024-07-21 07:37:29 1049

原创 深度学习笔记: 最详尽解释混淆矩阵 Confusion Matrix

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!假设我们有包含临床测量数据的医疗数据,例如胸痛、良好的血液循环、动脉阻塞和体重。我们希望应用机器学习方法来预测某人是否会患上心脏病。我们可以使用逻辑回归、k最近邻算法、随机森林或其他方法。为了决定哪种方法效果最好,我们首先将数据分为训练集和测试集。请注意,这将是一个使用交

2024-07-02 10:25:01 1215 1

原创 深度学习笔记: 最详尽解释预测系统的分类指标(精确率、召回率和 F1 值)

让我们来谈谈预测系统的分类指标以及对精确率、召回率和F1分数的直观解释。每当我们设计预测系统时,无论是统计模型还是复杂的神经网络,我们都希望看到它的表现如何。我们希望准确了解输出的质量,不仅如此,我们还希望能够将它们与其他当代或最先进的系统进行比较,以证明我们的方法更优。制定这样的比较并不简单。我们必须从多个角度提出质量问题,这需要一个良好的指标来量化输出的质量,使它们能够直接与其他方法进行比较,并确保输入不变性。

2024-07-02 07:59:29 1696 1

原创 深度学习笔记: 最详尽解释逻辑回归 Logistic Regression

逻辑回归类似于线性回归,但预测的是某事物是否为真,而不是像大小这样的连续值。逻辑回归拟合的是“S”形的“逻辑函数”曲线,而不是一条直线。这个曲线从0到1,表示根据预测变量(例如体重),某个结果发生的概率(例如老鼠是否肥胖)。逻辑回归可以用于分类样本,并且可以使用不同类型的数据(例如体重、基因型)进行分类。它还帮助评估哪些变量对分类有用(例如在使用体重、基因型、年龄和星座预测肥胖时,星座可能“完全无用”)。

2024-06-30 13:47:00 731 1

原创 深度学习笔记: 最详尽解释线性回归 Linear Regression

在线性回归中,我们旨在找到最佳拟合线,该线最小化观测数据点和预测值之间的差异。这个过程称为最小二乘法。

2024-06-29 11:11:57 1321

原创 深度学习笔记: 最详尽解释R 平方 (R²)

相关性测量两个定量变量(例如,重量和尺寸)之间关系的强度。接近 1 或 -1 的值表示关系强。接近 0 的值表示关系弱或无关系。在这个例子中,高 R² 值(0.97)表明鼠标的尺寸和体重之间存在很强的线性关系。这意味着我们的线性回归模型在根据鼠标尺寸解释其体重的变异性方面表现非常好。

2024-06-28 09:55:05 7254

原创 深度学习笔记: 最详尽解释决策树 Decision Trees

通常,决策树会提出一个陈述,然后根据该陈述是真还是假来做出决定。当决策树将事物分类到不同类别时,称为分类树。当决策树预测数值时,称为回归树。

2024-06-24 10:38:40 925

原创 深度学习笔记: 最详尽解释欠拟合(高偏差)和过拟合(高方差)

欠拟合发生在模型过于简单,无法捕捉数据的基础结构时。这样的模型具有高偏差,对数据做了强假设,未能捕捉特征与目标变量之间的重要关系。过拟合发生在模型过于复杂,开始捕捉数据中的基础结构以及训练数据集中的噪声或随机波动时。这样的模型具有高方差,在训练数据上表现异常出色,但在新数据上表现不佳。

2024-06-23 12:51:56 1080

原创 【LeetCode最详尽解答】42-接雨水 Trapping-Rain-Water

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!通过可视化图形来解决这个问题会更容易理解和解决。给定输入: ,输出应为 。解释:数组 表示的地形图会有 个单位的雨水被困住。最初,我尝试同时移动左指针和右指针,但在到达右半部分 时遇到了问题。这时,左指针指向值 ,而右指针指向数组的末尾。右边界值小于左边界值,无法形

2024-06-17 01:02:44 514 1

原创 【LeetCode最详尽解答】11-盛最多水的容器 Container-With-Most-Water

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!这个问题可以通过可视化图表来理解和解决。通过图形化这个问题,可以简化解决过程。我们可以使用双指针技术来解决它。起初,左指针设置在数组的起点,右指针设置在数组的终点。目标是找到最大的可能面积,这个面积受指针指向的较短高度的限制。面积可以通过公式 计算。容器的高度受较短的两

2024-06-16 11:22:06 1132 2

原创 【LeetCode最详尽解答】15-三数之和 3sum

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!示例:输入: 输出: 解释:不同的三元组是 和 。注意输出的顺序和三元组的顺序无关。首先,我们应该记住,解决方案集不得包含重复的三元组。考虑这个示例 ,我们需要找到 。如果我们先看索引 0,那么它将填充 -3(索引[0]) + 1 + 2 = 0。但是,当我们到达索引

2024-06-16 10:13:50 1050 1

原创 【LeetCode最详尽解答】167-两数之和 II-输入有序数组 Two-Sum-II-Input-Array-Is-Sorted

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!这是一个典型的双指针问题。输入:, 输出:解释: 和 的和是 。因此,, 。我们返回 。我们将左指针初始化在数组的起始位置,将右指针初始化在数组的末尾。while 循环条件是 。如果 的和小于目标值,我们将左指针右移,因为数组是按升序排序的。如果和大于目标值,我们将右

2024-06-16 07:23:13 1042 1

原创 【LeetCode最详尽解答】125-验证回文串 Valid-Palindrome

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!这个问题需要使用一些内置函数,比如 和 。基本要求简单明了。例子:输入: 输出: 解释: 是一个回文。我们可以设置两个指针:一个在输入的开始位置,另一个在末尾位置。左指针始终应小于右指针,因为如果它们在同一位置,我们不需要比较它们。如果左指针大于右指针,这没有意义,并

2024-06-16 05:34:45 962 1

原创 【LeetCode最详尽解答】271_编码和解码字符串 Encode-and-Decode-Strings

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!我观看了 Neetnode 关于这个问题的视频。如果我们只是将 编码为 ,然后解码回来,我们将不知道在哪里分隔这些单词。我们可以考虑使用特殊字符来分隔它们。例如,我们可以添加 ,使其变为 。然而,如果单词是 ,编码后会变成 ,解码回来会得到 。这意味着仅使用特殊字符并不

2024-06-15 09:27:44 1052

原创 深度学习笔记: 最详尽估算送达时间系统设计

类型期望目标指标优化为低 RMSE。估算时间应小于 10-15 分钟。如果我们高估,客户下单的可能性较低。低估可能会导致客户不满。训练高吞吐量,能够每天多次重新训练推理延迟为 100ms 至 200ms我们学习了如何使用梯度提升决策树将估算送达时间表述为一个机器学习问题。我们学习了如何收集和使用数据来训练模型。我们学习了如何使用 Kafka 处理日志和模型预测以实现近实时预测。

2024-06-15 05:01:24 1136

原创 【LeetCode最详尽解答】128_最长连续序列 Longest-Consecutive-Sequence

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!首先,我们需要找到每个递增序列的起始位置,并且舍弃重复的值。所以先使用 将 转换为一个集合。集合中的每个值可能是起始位置,也可能只是序列的一部分。我们只需要找到起始值。考虑列表 。如果不只找起始点,它会计算从 ,, 等开始的序列,导致 (O(n2)(O(n^2)(O(

2024-06-13 05:26:23 1516 1

原创 深度学习笔记: 最详尽Airbnb租赁搜索排名设计

类型预期目标指标实现高归一化折扣累积增益指标训练能够处理不平衡数据按时间分割训练数据和验证数据推理延迟从50ms到100ms能够避免对新房源的低估我们学习了如何通过使用预订可能性作为目标将搜索排名表述为一个机器学习问题。我们学习了如何使用折扣累积增益作为训练模型的一个指标。我们还学习了如何扩展我们的系统以处理每秒数百万次请求。位置 (i)房源ID相关性分数 (rel_i)1A32B23C34D05E1DCG: 6.14871IDCG: 13.34719。

2024-06-13 00:15:07 968 1

原创 【LeetCode最详尽解答】238.除自身以外数组的乘积 Product-of-Array-Except-Self

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!这个问题有点棘手,我看了 Neetcode 的解释。Neetcode 非常聪明。给定输入: 预期输出是: 首先,我们需要构建一个结果数组来存储每个乘积值。这个数组的长度与 相同。例如:我们可以注意到,数组是根据我们要知道其乘积的值分成两部分的。所以,我们可以计算前缀乘积

2024-06-12 07:12:52 798 1

原创 【LeetCode最详尽解答】347. 前K 个高频元素 Top_K_Frequent_Elements

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!最初,我想统计每个数字的出现次数,并将其存储在字典中,例如 ,其中键是元素,值是频率。但是,如何比较这些值呢?我认为应该将其变为 ,其中键是频率,值是元素。然而,我卡在了如何对键进行排序的问题上。对键进行排序的时间复杂度是 O(nlog⁡n)O(n \log n)O(nl

2024-06-11 11:37:12 790 1

原创 深度学习笔记: 最详尽广告点击预测系统设计

类型期望目标指标合理的归一化交叉熵和点击率训练处理不平衡数据的能力高吞吐量,并且能够在一天内多次重新训练推理50 到 100ms 的延迟在投放广告时,能够控制或避免广告预算的过度支出我们首先学习了选择规范化熵作为广告点击预测模型的度量标准。我们学习了如何应用聚合服务以实现低延迟和克服不平衡的工作负载。为了扩展系统并减少延迟,我们可以使用Kubeflow,使广告生成服务能够直接与广告排名服务通信。

2024-06-09 09:17:56 741 1

原创 深度学习笔记: 最详尽LinkedIn Feed 排名系统设计

类型期望目标指标合理的归一化交叉熵训练高吞吐量,能够每天多次重新训练支持高度个性化推断延迟从100毫秒到200毫秒提供高水平的数据新鲜度,避免多次显示相同的Feed我们学习了如何构建机器学习模型来排序 Feed。具有自定义损失函数的二元分类模型可以使模型对背景点击率不太敏感。我们学习了如何创建生成机器学习模型训练数据的流程。我们学习了如何通过扩展应用服务器和 Feed 服务来扩展训练和推理。

2024-06-07 04:22:10 978 1

原创 深度学习笔记: 最详尽视频推荐系统设计

类型期望目标指标合理的精准率,高召回率训练高吞吐量,能够频繁重新训练推断延迟在100ms到200ms之间,灵活的探索与利用平衡推荐系统应确保在提供相关内容和介绍新内容之间取得平衡,以保持用户参与并发现新视频。系统需要对快速变化的用户偏好和流行趋势做出响应和适应。我们首先学习了将推荐系统分为两个服务:候选生成服务和排序服务。我们还学习了使用深度学习全连接层作为基线模型,以及如何处理特征工程。为了扩展系统并减少延迟,我们可以使用kube-flow,使候选生成服务可以直接与排序服务通信。

2024-06-04 12:04:24 996 1

原创 深度学习笔记: 详解处理类别不平衡

当模型正确分类邮件时,损失相对较低。当模型错误分类邮件时,损失较高,尤其是垃圾邮件类别由于更高的权重。在训练期间,错误分类的高损失促使模型调整其参数,以减少未来迭代中的高损失,从而提高整体性能,特别是对少数类别(垃圾邮件)。当错误分类垃圾邮件的损失更高时,这会提示模型在训练期间更加关注正确预测垃圾邮件。通过在数据集不平衡时平衡每个类别的影响,模型倾向于偏向多数类(在这种情况下是非垃圾邮件),因为它看到更多该类的例子。

2024-05-29 11:28:30 1019 1

原创 详解精确率 (Precision)召回率 (Recall)F1评分 (F1 Score)

低召回率,高精确率: 系统过于挑剔,推荐较少的视频,大多数是相关的,但错过了很多相关视频。这导致高精确率但低召回率。高召回率,低精确率: 系统过于宽泛,推荐了很多视频,捕捉了更多的相关视频,但也包括许多不相关的视频。这导致高召回率但低精确率。在这两种情况下,精确率和召回率之间的不平衡导致了低F1评分,突显了需要更好地平衡以实现最佳推荐系统。

2024-05-29 11:15:08 5907 4

原创 生成式AI概述

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!生成型人工智能是传统机器学习的一个子集。生成型人工智能背后的机器学习模型已经学会了创建或生成与它们训练数据类似的新内容,通过在庞大的数据集中寻找人类原创内容的统计模式。

2024-05-08 05:58:35 338

原创 深度学习笔记:详解优化器之随机梯度下降(SGD)

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!在深度学习中,优化器被用来调整模型的参数。优化器的目的是调整模型权重以最小化损失函数。回顾一下,我们使用线性类和激活函数类构建了自己的MLP模型,并且已经了解了如何对神经网络中使用的核心组件进行前向传播和反向传播。前向传播用于估计,而反向传播告诉我们参数变化如何影响损失。

2024-03-13 05:20:35 2318

原创 深度学习笔记:详解损失函数

欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。损失函数根据您使用的神经网络类型和数据类型,不同的损失函数可能会变得有用,例如分类问题的交叉熵损失,回归问题的均方误差。了解这些损失函数是如何计算的,以及它们将如何用于更新您的网络是很重要的。损失类类属性:AAA:存储模型预测以计算反向传播。YYY:存储期望输出以计算反向传播。类方法:forwardforw

2024-02-29 03:34:13 937

原创 深度学习笔记:详解MSE Loss均方误差损失函数

欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。均方误差(MSE,Mean Squared Error)是回归问题中评估预测误差的一种广泛使用的指标。在回归中,目标是预测连续值,例如根据房屋的特征(如面积、位置、卧室数量等)估计房屋的价格。计算从计算模型预测(AAA)与实际真值(YYY)之间的平方误差(SESESE)开始:SE(A,Y)=(A−Y)⊙(A−Y)SE(A, Y)

2024-02-28 12:25:16 6425 2

原创 深度学习笔记:详解交叉熵损失函数

欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。交叉熵损失交叉熵损失是用于基于概率的分类问题最常用的损失函数之一。交叉熵损失前向方程首先,我们使用softmax函数将原始模型输出AAA转换成由输入数值的指数决定的CCC类的概率分布。ιN\iota_NιN​、ιC\iota_CιC​是大小为NNN和CCC的列向量,包含全部为1的值。softmax(A)=σ(A)=ex

2024-02-28 12:13:50 1296 1

原创 深度学习笔记:详解Softmax激活函数

欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。SoftmaxSoftmax激活函数是一种向量激活函数,主要应用于神经网络的末端,将向量或原始输出转换为概率分布,其中输出元素总和为1。但是,它也可以像前面讨论过的其他激活函数一样应用在神经网络的中间。Softmax前向方程给定一个CCC维输入向量ZZZ,其第mmm个元素表示为zmz_mzm​,softmax.forwar

2024-02-22 11:54:19 3703 2

原创 深度学习笔记:详解激活函数

欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。激活函数我使用 relu.md 来阐述激活函数 ReLU 的主要思想。概述在机器学习领域,工程师可以自由选择任何可微分函数作为激活函数。在神经网络中引入非线性元素 (fNNf_{NN}fNN​) 对于模拟非线性现象至关重要。在缺乏激活函数的情况下,fNNf_{NN}fNN​ 的输出始终保持线性,不受其深度的影响,这是因为方

2024-02-11 16:49:27 1037

原创 深度学习笔记: Sigmoid激活函数

Sigmoid激活函数是人工神经网络中广泛使用的非线性激活函数之一。它有效地将输入值映射到0和1之间的范围,使其特别适用于输出需要被解释为概率的模型。

2024-02-09 12:26:00 6769

原创 深度学习笔记: 前馈神经网络(FFNN)

前馈神经网络包括多个层次:输入层、一个或多个隐藏层和输出层。在FFNN中,数据单向流动——直接从输入到输出,没有循环。当使用多个隐藏层时,神经网络被称为“深度神经网络”,从而引入了“深度学习”的领域。

2024-01-31 22:01:40 1217

原创 史上最详尽机器学习blog

大家好,我现在在写机器学习的blog, 每天持续更新, 希望大家可以star一下多多支持我哦!progress.txt是我已经写好的!标题党了一下嘿嘿:)

2024-01-30 11:58:30 241 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除