python数据结构与算法-动态规划(最长公共子序列)

一、最长公共子序列问题

1、问题概念

  • 一个序列的子序列是在该序列中删去若干元素后得 到的序列。

  • 例如:"ABCD”和“BDF”都是“ABCDEFG”的子序列。

  • 最长公共子序列(LCS) 问题: 给定两个序列X和Y,求X和Y长度最大的公共子字列。

  • 例:X="ABBCBDE”Y="DBBCDB”LCS(XY)="BBCD"

  • 应用场景:字符串相似度比对

2、问题求解思路

(1)问题思考

  • 思考: 暴力穷举法的时间复杂度是多少?

序列中的每一个值都有两种选择,被选择或者不被选择,因此一个长度为n的序列,其子序列为种。求解长度为n和长度为m的序列的公共子序列,对比个子序列之间的关系,是否相同,因此时间复杂度为O()

  • 思考: 最长公共子序列是否具有最优子结构性质?

有,见解最优子结构

(2)最优子结构

(LCS的最优子结构):令X=(,......,)和Y=(,......,)为两个序列,Z=(,......,)为X和Y的任意 LCS。

  • 如果 = ,则 = = 的一个LCS。

例如:序列ABCD和ABD,其LCS为ABD,此时 = = =D,可见,AB是ABC和AB的LCS。

  • 如果,且意味着Z是和Y的一个LCS。

例如:序列ABCD和ABC,其LCS为ABC,此时,即D与C不相等,则为ABC,可见,ABC是ABC和ABC的LCS。

  • 如果,且意味着Z是X和的一个LCS。

例如:序列ABC和ACD,其LCS为AC,此时,即D与C不相等,则为AC,可见,AC是ABC和AC的LCS。

示例如下:

要求a="ABCBDAB"与b="BDCABA"的LCS:

  • 由于最后一位"B“≠"A”:

  • 因此LCS(a,b)应该来源于LCS(a[:-1],b)与LCS(a,b[:-1])中更大的那一个

(3)问题递推式

1)递推式推理说明

结合最优子结构的定理,可以得到以上的图。

举例解析:

  • x0都是空列表,y0也是空列表,因此与x0或者y0的LCS一定是0。

  • 序列BDC和序列A:C != A,则LCS来源与LCS([BDC],[ ])和LCS([BD],[A])中,图中可看出,两者都为0,即LCS([BDC], [A])的左边和上边的位置。

  • 序列BDCA和序列A:A = A,则A一定是两个序列的LCS中的一个元素,且LCS([BDC], [A])加上元素A就是LCS([BDCA], [A])。查看可知,LCS([BDC], [A]) = 0,所以LCS([BDCA], [A]) = 0 + 1(元素A)。

  • 剩余的同理。

2)递推式

c[i,j]表示的LCS长度

二、最长公共子序问题代码实现

1、最长公共子序长度求解


def lcs_length(x,y): # 公共子序列长度,x,y: 字符串、列表等序列
    m = len(x) # x序列长度
    n = len(y) # y序列长度
    c = [[0 for i in range(n + 1)] for _ in range(m+1)] # 创建m行n列二维数组,初始值为0 
    for i in range(1, m+1):  # 按数组的行求,x0都为0不用求,所以从1开始
        for j in range(1, n+1): # 数组每行中的遍历,y0都为0,不用求
            if x[i - 1] == y[j - 1]:  # x[i-1]其实是字符串的i,因为i=0在二维列表中都是0,不求解,但是在字符串中仍需要从索引0遍历
                c[i][j] = c[i-1][j-1] + 1 # 递推式
            else:  # xi!=yi
                c[i][j] = max(c[i-1][j],c[i][j-1])  # 递推式
    
    return c[m][n]    # x和y的最后一个元素对比完,二维数组的最后一位

print(lcs_length('ABCBDAB', 'BDCABA'))

输出结果

4

2、最长公共子序的序列求解

动态规划+ 回溯算法搭配使用,动态规划求解最优值,回溯法推算出过程的解。

(1)动态规划求解并存储解-代码实现

# 动态规划求解,存储解及解的计算过程
def lcs(x,y): # 求解并存储箭头方向,x,y为字符串、列表等序列
    m = len(x) # x的长度
    n = len(y) # y的长度
    c = [[0 for i in range(n+1)] for _ in range(m+1)] # 二维数组,初始值为0,用于存储长度结果
    d = [[0 for i in range(n+1)] for _ in range(m+1)] # 二维数组,初始值为0,用于存储箭头方向,1表示左上,2表示上,3表示左
    for i in range(1,m+1): # 按行遍历二维数组
        for j in range(1,n+1): # 每行的各数值遍历, c0j和ci0相关的值都为0,所以均从1开始
            if x[i - 1] == y[j - 1]: # xi=yi的情况,二维数组中i,j=0时,都为0已经确定,但字符串x,y仍需从0开始遍历
                c[i][j] = c[i - 1][j - 1] + 1 # 递推式
                d[i][j] = 1 # 箭头方向左上方
            elif c[i][j - 1] > c[i - 1][j]: # 递推式,选择更大的
                c[i][j] = c[i][j - 1]
                d[i][j] = 3 # 箭头左边
            else: # c[i-1][j] >= c[i][j-1]
                c[i][j] = c[i - 1][j]
                d[i][j] = 2 # 箭头上方
    return c[m][n], d

c, d = lcs("ABCBDAB", "BDCABA")
for _ in d:
    print(_)

输出结果:

[0, 0, 0, 0, 0, 0, 0]
[0, 2, 2, 2, 1, 3, 1]
[0, 1, 3, 3, 2, 1, 3]
[0, 2, 2, 1, 3, 2, 2]
[0, 1, 2, 2, 2, 1, 3]
[0, 2, 1, 2, 2, 2, 2]
[0, 2, 2, 2, 1, 2, 1]
[0, 1, 2, 2, 2, 1, 2]

(2)回溯算法的应用-代码实现

# 动态规划求解,存储解及解的计算过程
def lcs(x,y): # 求解并存储箭头方向,x,y为字符串、列表等序列
    m = len(x) # x的长度
    n = len(y) # y的长度
    c = [[0 for i in range(n+1)] for _ in range(m+1)] # 二维数组,初始值为0,用于存储长度结果
    d = [[0 for i in range(n+1)] for _ in range(m+1)] # 二维数组,初始值为0,用于存储箭头方向,1表示左上,2表示上,3表示左
    for i in range(1,m+1): # 按行遍历二维数组
        for j in range(1,n+1): # 每行的各数值遍历, c0j和ci0相关的值都为0,所以均从1开始
            if x[i - 1] == y[j - 1]: # xi=yi的情况,二维数组中i,j=0时,都为0已经确定,但字符串x,y仍需从0开始遍历
                c[i][j] = c[i - 1][j - 1] + 1 # 递推式
                d[i][j] = 1 # 箭头方向左上方
            elif c[i][j - 1] > c[i - 1][j]: # 递推式,选择更大的
                c[i][j] = c[i][j - 1]
                d[i][j] = 3 # 箭头左边
            else: # c[i-1][j] >= c[i][j-1]
                c[i][j] = c[i - 1][j]
                d[i][j] = 2 # 箭头上方
    return c[m][n], d

# 回溯算法
def lcs_trackback(x,y): # 最长公共子序列的序列
    c, d = lcs(x, y) # c长度,d箭头方向
    i = len(x) # x的长度
    j = len(y) # y的长度
    res = [] # 结果列表
    while i > 0 and j > 0 : # 序列x和y还有值未比对,任何一个序列为0了都不再继续
        if d[i][j] == 1: # 箭头左上方 ——> 匹配
            res.append(x[i - 1])  # 二维列表中i=0时,值为0,但是序列x的值是从0开始遍历的
            i = i - 1 # 位置移到左上位置
            j = j - 1
        elif d[i][j] == 2: # 箭头上方->不匹配
            i = i - 1 # 位置往上移一格
        else: # dij = 3 ,箭头左向
            j = j - 1 # 位置往左移一格
    
    return "".join(reversed(res))  # 列表翻转,并将列表用''连接成字符串

print(lcs_trackback("ABCBDAB", "BDCABA"))

结果输出

BCBA

  • 4
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python提供了许多数据结构和算法的实现,下面是一些常见的数据结构和算法: 1. 列表(List):可变序列,可以存储任意类型的元素,并且可以动态调整大小。常用的操作包括添加、删除、修改和遍历等。 2. 元组(Tuple):不可变序列,与列表类似,但元素不可修改。通常用于存储不可改变的数据。 3. 字典(Dictionary):键值对的集合,可以通过键来快速访问对应的值。字典是基于哈希表实现的,具有快速的查找性能。 4. 集合(Set):无序且不重复的元素集合。可以进行交集、并集、差集等操作。 5. 栈(Stack):后进先出(LIFO)的数据结构。常用的操作包括压栈(push)和弹栈(pop)。 6. 队列(Queue):先进先出(FIFO)的数据结构。常用的操作包括入队(enqueue)和出队(dequeue)。 7. 链表(Linked List):由一系列节点组成的数据结构,每个节点包含一个元素和一个指向下一个节点的链接。 8. 树(Tree):由节点和边组成的层次结构。树有许多种类,如二叉树、二叉搜索树、平衡二叉树等。 9. 图(Graph):由节点和边组成的非线性数据结构。图可以用来表示各种实际问题,如网络、社交关系等。 常见的算法包括: 1. 排序算法:如冒泡排序、插入排序、选择排序、快速排序、归并排序等。 2. 查找算法:如线性查找、二分查找、哈希查找等。 3. 图算法:如深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd-Warshall算法)、最小生成树算法(Prim算法、Kruskal算法)等。 4. 动态规划算法:如背包问题、最长公共子序列等。 5. 分治算法:如归并排序、快速排序等。 以上只是一些常见的数据结构和算法Python还提供了许多其他的库和模块,可以扩展数据结构和算法的功能和性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值