啥是inference推理/推断?

本文介绍了深度学习中模型训练(Training)与推理(Inference)的概念。Training是通过喂养有标签的数据让模型学习,而Inference则是将训练好的模型应用于新数据进行预测。在Pytorch中,进行推理时需设置model.eval()和with torch.no_grad()来确保不更新权重并避免梯度计算。通过这个过程,我们可以验证模型在未知数据上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近加入了新的组,讨论的时候大家经常把inference和training挂在嘴边。每次内心都在嘀咕,,到底啥是inference?模型训练好了之后,还要推理过程吗?于是查了查资料,发现还真有。。

Training训练

这个我懂,就是分batch给网络喂一堆有标签的数据,让他逐渐学习数据特征,然后匹配到对应的标签。比如给一张图片,能够认出图片里面是个苹果。

Inference推理

把上边训练好的模型,拿到新的没见过的数据上试一试。看看效果怎么样。所以不需要分batch迭代更新参数,只需要一次求解,前向传播。

Pytorch怎么inference

1 首先加载数据,看是否需要预处理啥的。

2 然后调用模型,注意两点

        (1) model.eval()状态,不需要再训练

        (2)with torch.no_grad():状态

3 再就是正常的计算结果,得到输出。

参考:

【深度之眼】【Pytorch打卡第19天】:图像分类Resnet的Inference_雯文闻的博客-CSDN博客_pytorch 图像分类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值