2024算力共享
文章平均质量分 86
在当今数字化时代,算力作为推动科技进步和社会发展的重要力量,正以前所未有的速度改变着我们的世界。算力共享专栏应运而生,旨在打造一个集信息分享、技术交流、合作创新于一体的平台,促进算力资源的优化配置与高效利用。
ZhangJiQun&MXP
大语言模型训练需要百卡算力,但人脑的功耗只有20瓦。道阻且长。
展开
-
大模型的并行计算:多头切片技术;降低显存占用的机制
综上所述,通过将Transformer模型的每个Layer视为独立状态,并将参数分散到不同GPU上,结合最小化显存占用机制,可以大幅降低总体显存需求,从而实现更高效的大模型分布式推理。这里提到的“层”并不是指切分多头(Multi-Head Attention中的头)或者切分MLP,而是指整个自注意力机制和前馈神经网络作为一个整体被视为一个层。Transformer模型的每一层(Layer)主要指的是模型中的基本构建块,这些构建块串联起来构成了整个Transformer模型。原创 2024-11-16 00:01:56 · 91 阅读 · 0 评论 -
内存、显存和GPU在Transformer架构中承担什么计算任务
综上所述,内存、显存和GPU在Transformer架构中各自承担着不同的计算任务。内存主要用于数据的存储和传输,显存用于存储模型的参数和状态信息,而GPU则负责模型的训练和推理任务。这三者共同协作,使得Transformer模型能够在自然语言处理和其他序列建模任务中取得优异的性能。是计算机系统中重要的组成部分,它们在Transformer架构中承担着不同的计算任务。前向传播、反向传播和参数更新。原创 2024-11-16 00:01:01 · 36 阅读 · 0 评论 -
Transformer中的算子:其中Q,K,V就是算子
这些操作可以是简单的算术运算(如加、减、乘、除),也可以是更复杂的逻辑运算(如与、或、非等)。算子在程序设计语言中扮演着重要角色,它们是定义或执行某项特定功能的特殊符号。例如,在编程中,原创 2024-11-15 23:59:01 · 15 阅读 · 0 评论 -
reduce-scatter:适合分布式计算;Reduce、LayerNorm和Broadcast算子的执行顺序对计算结果的影响,以及它们对资源消耗的影响
Reduce、LayerNorm和Broadcast算子的执行顺序对计算结果的影响,以及它们对资源消耗的影响原创 2024-11-15 23:53:31 · 125 阅读 · 0 评论 -
Zero、Zero-Offload、Zero-Infinity是什么
考虑到Transformer架构固有的内存密集型特性,高效的 显存管理仍然是LLM分布式推理中面临的首要挑战。和 ZeRO-Infinity[9]支持内存卸载,将 GPU 的显存压 力分担到 CPU 甚至 NVMe 内存上,从而打破 GPU 的显存限制。但,因此使用 场景将会受到很大的限制。原创 2024-11-15 23:39:47 · 17 阅读 · 0 评论 -
NVMe(Non-Volatile Memory Express)非易失性存储器访问和传输协议
NVMe是一种基于PCI-Express(PCIe)总线的通信协议,用于访问通过PCIe总线附加的非易失性存储器介质,如采用闪存的固态硬盘(SSD)。它定义了一套命令集和功能集,旨在提高存储设备的性能和效率,同时实现广泛的企业级系统和客户端系统的互操作性。原创 2024-11-15 23:39:11 · 12 阅读 · 0 评论 -
大语言模型的算力共享体系中,Reduce、LayerNorm和Broadcast操作
虽然在大语言模型的算力共享体系中,Reduce、LayerNorm和Broadcast这三个操作不会严格按照这个顺序出现(因为LayerNorm是在Transformer层内部应用的,而All-Reduce操作是在分布式训练的不同节点之间进行的),但我们可以将它们与Transformer层的前向传播、梯度计算和参数更新过程相结合来理解。LayerNorm的应用与All-Reduce操作是独立的,但在分布式训练中,LayerNorm后的参数更新可能会受到All-Reduce操作的影响。原创 2024-11-15 11:22:32 · 146 阅读 · 0 评论 -
低资源集群中的大语言模型分布式推理技术:Reduce、LayerNorm和Broadcast的作用
核心内容是探索了一种并行能力更强、具有更好兼容性的大语言模型(LLM)分布式推理范式,该范式专为弱算力、小显存环境设计。针对这些环境面临的技术挑战,提出了基于通信树的高效All-Reduce组通信技术、细粒度的显存管理与调度技术等关键技术。并基于这些技术,构建了一套针对资源受限场景的LLM推理软件系统,旨在用数量有限的低资源设备,最大化能推理的LLM,同时通过优化通信策略与计算调度加速分布式推理。原创 2024-11-15 11:09:56 · 121 阅读 · 0 评论 -
论文解析:算力网络中多参与方资源共享机制研;Stackelberg博弈;拍卖理论
在这个拍卖过程中,算力提供方作为卖家,向算力平台方提供自己的资源(如计算能力、存储空间等)和价格。算力平台方则根据资源需求情况,从候选的算力提供方中选择最合适的进行资源购买。假设算力平台方设定了一个初始价格P,算力需求方根据这个价格来决定自己的资源购买量Q。算力平台方观察到算力需求方的反应后,首先阐述了算力网络作为新型生产力的重要性,并指出随着国家数字经济发展战略的推进,算力已渗透到各行各业的生产过程中。,对算力需求方、算力平台方和算力提供方之间的交互行为进行建模和分析,优化集体收益和个体收益。原创 2024-11-15 11:03:11 · 10 阅读 · 0 评论 -
论文解析:计算能力资源的可信共享:利益驱动的异构网络服务提供机制
ACO-SMA算法是一种基于蚁群优化(Ant Colony Optimization)的服务匹配算法,用于在更复杂、更大规模的服务匹配问题中寻找近似最优解。该算法通过模拟蚁群在搜索过程中释放信息素并依据信息素强度选择路径的行为,来寻找满足约束条件的匹配方案。高质量的路径会留下更多的信息素,从而吸引更多的蚂蚁在后续迭代中选择该路径。ACO-SMA算法构建了一个完全图,图中的节点代表服务提供者或需求者,边代表可能的匹配。每条边代表一个可能的匹配,并带有一个权重,表示该匹配的满意度或利润。原创 2024-11-14 20:37:01 · 203 阅读 · 0 评论 -
二部图匹配算法:匈牙利方法与KM-SMA算法区别
综上所述,匈牙利方法与KM-SMA算法在问题类型、算法原理和适用场景上存在显著差异。匈牙利方法主要用于解决无权或权值相等的二分图匹配问题,而KM-SMA算法则专门用于解决加权二分图匹配问题。假设有一个加权二分图G=(V, E),其中V=V1∪V2,V1和V2是两个不相交的顶点集合,E是顶点之间的边集合,每条边e=(u, v)(u∈V1, v∈V2)都有一个权值w(e)。,主要体现在问题类型、算法原理和适用场景上。满意度、配送的成本等。原创 2024-11-14 09:39:54 · 114 阅读 · 0 评论 -
论文解析:基于区块链的去中心化服务选择,用于QoS感知的云制造(四区)
一种基于区块链的去中心化云制造服务选择方法,并通过设计三链区块链数据存储模型和改进的PBFT共识算法等核心创新点来提高服务选择过程的效率和质量。原创 2024-11-13 23:42:18 · 99 阅读 · 0 评论 -
论文解析:基于区块链的计算能力共享系统
边缘服务器在独立运行时,由于计算资源有限,不能总是及时处理所有传入的计算任务,需要经常通过点对点卸载进行协作。更重要的是,边缘服务器由不同的计算部门部署和管理,使任务卸载过程面临风险。该算法通过智能地选择最合适的计算服务节点来处理任务,从而在保证任务完成质量的同时,降低了各部门的计算力成本。通过这种方式,进化博弈论为计算服务部门之间的计算力共享策略提供了一个动态且适应性的模型,有助于优化整个计算力共享网络的性能和资源利用率。在论文中,这个理论被应用于构建计算服务部门之间计算力共享策略的动态模型。原创 2024-11-13 22:04:16 · 74 阅读 · 0 评论 -
论文解析:基于性能共享的分布式计算系统的可靠性(2区)
UGF技术是一种用于评估具有离散分布性能的系统整体性能概率分布的方法。它特别适用于多状态系统,其中系统元素之间的相互作用和物理性质可能各不相同。UGF技术通过引入不同的组合运算符,可以灵活地处理各种系统拓扑结构和性能度量。原创 2024-11-13 23:58:19 · 27 阅读 · 0 评论 -
大模型参数大小,占用多少字节,验证环节需要多少算力;“100B Token,支持8K上下文”是什么意思 ;Llama模型;
100B Token,支持8K上下文”这一描述,通常用来表示某个语言模型或系统的处理能力和上下文理解能力。其中,“100B Token”指的是模型能够处理的数据量的大小,“支持8K上下文”则指的是模型能够同时处理或理解的文本长度和上下文信息。这两个特性共同决定了模型在自然语言处理任务中的性能和表现。原创 2024-11-10 23:57:08 · 248 阅读 · 0 评论 -
大模型参数:temperature和top_p
值会使生成文本更加保守和精准,但可能缺乏多样性和创造性。因此,在选择这些参数时,需要考虑到应用场景和用户需求。值会增加生成文本的多样性和随机性,但也可能导致生成不连贯或错误的文本。:指定生成文本的多样性。与温度类似,但控制方式略有不同。通常需要根据具体需求进行权衡和调整。是在生成式模型中常用的两个参数,它们用于。,但也可以设置为更高的值以增加随机性。,而较低的温度则会更加保守和精准。:控制生成文本的随机性。相反,较低的温度和较低的。原创 2024-11-09 22:31:09 · 36 阅读 · 0 评论 -
算力网络多方资源共享机制:算力交易
设计算力网络交易平台、可信交易保障机制和交易激励机制,解决了算力网络中的资源共享问题。它利用区块链技术确保交易的安全可信通过声誉评估模型提高交易的可信度利用博弈论和拍卖理论优化资源分配和定价策略这些研究成果对于推动算力网络的发展、提高算力资源的利用效率具有重要意义。原创 2024-11-09 18:46:59 · 32 阅读 · 0 评论 -
AIoT的协同计算
在这个领域中,多移动终端设备如智能手机、可穿戴设备、无人机等,都具备了泛在感知、智能计算与自主决策的能力。为了打破这些局限,论文提出了多移动终端轻量化感–算–策协同增强方法。综上所述,多移动终端轻量化感–算–策协同增强方法通过协同感知、协同计算和协同决策,打破了单个移动终端在资源、视角和性能上的局限,提升了系统的感知覆盖和计算效率,为多种应用场景提供了高度智能的感知解决方案。论文中提出了两个初步的研究实践和实验:空地异构终端协同感–算–策系统和多移动终端实时协作的多模态自主感知与问答。原创 2024-11-09 18:42:45 · 222 阅读 · 0 评论 -
大语言模型切分多头的多设备协同计算研究
为了克服这些挑战,本文提出了一种基于大语言模型切分多头的多设备协同计算方法。该方法通过在大语言模型中实施切分策略,将计算任务分配到多个移动终端设备上,实现协同计算,从而优化资源利用、降低传输成本并提高系统响应速度。因此,本文提出了一种创新的解决方案:基于大语言模型切分多头的多设备协同计算方法。本文提出了一种基于大语言模型切分多头的多设备协同计算方法,并通过实验验证了其有效性。未来,我们将继续优化该方法,探索更多应用场景,并研究如何与其他先进技术相结合,以进一步提升智能物联网的性能和可靠性。原创 2024-11-09 18:36:13 · 408 阅读 · 0 评论 -
算力与能量的全分布式在线共享来降低5G网络的用电成本。基于随机对偶次梯度法的多时隙约束耦合问题解耦方法示例;随机对偶次梯度法的在线管理策略
算力与能量的全分布式在线共享来降低5G网络的用电成本。基于随机对偶次梯度法的多时隙约束耦合问题解耦方法示例;随机对偶次梯度法的在线管理策略原创 2024-11-09 13:52:09 · 274 阅读 · 0 评论 -
LLM训练中的分布式训练并行技术;分布式训练并行技术
这样可以充分利用多个计算设备的计算能力,加速模型的训练过程,并减少单个设备的内存和计算压力。在使用这些框架进行模型训练时,只需要定义模型的计算图和输入数据,框架就会自动选择最优的并行策略进行训练。在反向计算时,最后一个GPU计算完梯度后,将结果传递给上一个GPU,依次类推,直到所有GPU都完成梯度计算并更新模型参数。在训练过程中,每个GPU独立地计算梯度,并通过AllReduce操作将所有GPU的梯度进行汇总和平均,最后更新模型参数。这样,可以充分利用多个GPU的计算能力和内存资源,加速模型的训练过程。原创 2024-11-07 20:03:52 · 68 阅读 · 0 评论 -
大模型低秩分解
是一种矩阵分解技术,其核心思想是将一个大矩阵分解为两个或多个更小、更简单的矩阵的乘积,同时这些小的矩阵通常具有更低的秩。综上所述,低秩分解是一种强大的矩阵分解技术,能够揭示数据中的低维结构并减少参数量。通过应用优化算法(如梯度下降或交替最小二乘法),我们可以找到近似的A和B,使得 M≈A×B。我们希望将这个矩阵分解为两个矩阵A(4x2)和B(2x4)的乘积,即 M≈A×B。这里的k(秩)为2,远小于原矩阵的维度。则 A×B 的结果将接近M,但可能不完全相同,因为这是一个近似过程。原创 2024-11-07 19:54:43 · 35 阅读 · 0 评论 -
LoRA:大型语言模型(LLMs)的低秩适应;低秩调整、矩阵的低秩与高秩
目录LoRA:大型语言模型(LLMs)的低秩适应一、LoRA的基本原理二、LoRA的举例说明三、LoRA的优势低秩调整、矩阵的低秩与高秩一、低秩调整(LoRA)二、矩阵的低秩三、矩阵的高秩LoRA(Low-Rank Adaptation of LLMs),即大型语言模型(LLMs)的低秩适应,是一种高效的微调技术。它通过向模型中添加少量可训练参数(以低秩矩阵的形式),同时保持原始模型参数不变,实现了对LLM的快速定制化。以下是对LoRA的详细举例说明:发现更多精彩视频 - 抖音搜索假设我们有一个预训练的大型原创 2024-11-06 22:49:54 · 175 阅读 · 0 评论 -
文心一言能通过测试数据进行模型微调吗?为什么使用对话窗口形式?注意力机制、长短期记忆(LSTM)或门控循环单元(GRU)、Transformer和自注意力机制、稀疏注意力模式以及内存机制
文心一言能通过测试数据进行模型微调吗?为什么使用对话窗口形式?注意力机制、长短期记忆(LSTM)或门控循环单元(GRU)、Transformer和自注意力机制、稀疏注意力模式以及内存机制原创 2024-11-05 10:08:01 · 297 阅读 · 0 评论 -
一、文心一言问答系统为什么要分对话,是否回学习上下文?二、文心一言是知识检索还是大模型检索?三、文心一言的词向量、词语种类及多头数量
通过分对话的形式,系统可以更好地理解用户的意图,并根据用户的反馈进行逐步的解答和修正。这种基于大模型的回答方式使得文心一言能够更好地理解用户的意图和语境,并给出更加准确和相关的回答。虽然大模型在训练过程中可能会学习并整合大量的知识和信息,但这些知识和信息是作为模型的一部分被整合和运用的,而不是作为独立的检索对象。总的来说,文心一言问答系统是一种基于大模型进行问题回答的人工智能系统,它融合了自然语言处理、深度学习和知识表示等多种先进技术,为用户提供高效、智能的问答服务。是的,文心一言能够通过。原创 2024-11-05 10:00:56 · 624 阅读 · 0 评论 -
注意力机制的目的:理解语义;编码器嵌入高纬空间计算;注意力得分“得到S*V”;解码器掩码和交叉注意力层用于训练;最终的编码器和输出实现大模型
注意力机制的目的:理解语义;编码器嵌入高纬空间计算;注意力得分“得到S*V”;解码器掩码和交叉注意力层用于训练;最终的编码器和输出实现大模型原创 2024-11-04 16:44:05 · 485 阅读 · 0 评论 -
Outputs (shifted right)是什么;Input,Input Embedding,Output ,Output Embedding举例说明
在实际的数据流转过程中,Input 和 Output 是模型的输入和输出数据,而 Input Embedding 和(可能的)Output Embedding 是将这些数据转换为模型可以理解和处理的数值形式的过程。在自然语言处理中,这通常涉及将文本转换为嵌入向量并进行相应的处理。原创 2024-11-03 23:59:20 · 67 阅读 · 0 评论 -
解码层跑几次取决于输出词汇多少;10个单词,在解码层跑几次transformer
在自然语言处理任务中,Transformer 架构的解码器(Decoder)运行次数与你想要生成的输出长度有关。如果你的任务是将这 10 个单词翻译成另一种语言,或者基于这 10 个单词续写一个句子等生成任务,那么运行次数主要取决于目标输出序列的长度。原创 2024-11-03 23:56:21 · 46 阅读 · 0 评论 -
ChatGPT 和 RAG(检索增强生成)的区别;ChatGPT 和 RAG 的联系
Transformer 架构的神经网络来对输入问题进行理解和生成回答。:在一些应用场景中,可以将 ChatGPT 和 RAG 结合使用。明确的外部知识库用于检索,而是依赖模型内部的 “隐式知识”原创 2024-11-03 22:24:57 · 394 阅读 · 0 评论 -
Transformer 架构简单理解;GPT-3.5 的架构,向量长度为 :12288;Transformer架构改进:BERT和GPT
Transformer 架构简单理解;GPT-3.5 的架构,向量长度为 :12288;Transformer架构改进:BERT和GPT原创 2024-11-03 21:46:49 · 208 阅读 · 0 评论 -
查询向量(Query)、键向量(Key)和值向量(Value)的作用;在编码器和解码器中的向量作用;Encoder-Decoder注意力层箭头解释:1:K;2:V;3:Q
查询向量(Query)、键向量(Key)和值向量(Value)的作用;在编码器和解码器中的向量作用;Encoder-Decoder注意力层箭头解释:1:K;2:V;3:Q原创 2024-11-03 21:44:54 · 14 阅读 · 0 评论 -
GPT原理;ChatGPT 等类似的问答系统工作流程如下;当用户向 ChatGPT 输入一个问题后:举例说明;ChatGPT不是通过索引搜索的传统知识库
GPT原理;ChatGPT 等类似的问答系统工作流程如下;当用户向 ChatGPT 输入一个问题后:举例说明;ChatGPT不是通过索引搜索的传统知识库原创 2024-11-03 21:41:22 · 381 阅读 · 0 评论 -
在验证或训练过程中,掩蔽自注意力层(Masked Self-Attention)和Encoder-Decoder注意力层是必须的吗;掩蔽自注意力层作用;掩蔽自注意力层输入输出是什么
在验证或训练过程中,掩蔽自注意力层(Masked Self-Attention)和Encoder-Decoder注意力层是必须的吗;掩蔽自注意力层作用;掩蔽自注意力层输入输出是什么原创 2024-11-03 19:29:59 · 113 阅读 · 0 评论 -
注意力机制原理,举例说明
综上所述,解码器-编码器的注意力机制允许模型在生成输出时关注输入序列中的不同部分,并捕捉输入和输出之间的对应关系。这种机制在机器翻译、文本摘要、语音识别等任务中发挥着重要作用。在解码器-编码器的架构中,注意力机制是一种重要的技术,它允许解码器在生成每个输出时,能够关注输入序列中的不同部分。这种机制使得模型能够更准确地捕捉输入和输出之间的对应关系。假设我们有一个机器翻译任务,输入是英文句子“The cat is on the mat.”,输出是中文句子“猫在垫子上。原创 2024-11-03 18:30:49 · 33 阅读 · 0 评论 -
Transformer模型中,Encoder(编码器)和Decoder(解码器)
假设输入文本为:“Transformer模型在自然语言处理领域取得了显著成果,其核心在于Encoder和Decoder的协同工作。Encoder负责编码输入信息,而Decoder则负责生成输出信息。Encoder处理Encoder将输入文本转换为一系列隐藏向量,这些向量捕捉了文本中的关键信息,如“Transformer模型”、“自然语言处理领域”、“Encoder和Decoder的协同工作”等。Decoder生成摘要Decoder开始生成摘要文本。原创 2024-11-03 18:26:49 · 137 阅读 · 0 评论 -
nanoGpt:11个单词,每个单词表示48维度;3种类型单词;Token Embed(词元嵌入);Input Embed(输入嵌入);Position Embed(位置嵌入)
目录nanoGpt:11个单词,每个单词表示48维度;3种类型单词Token Embed(词元嵌入)Input Embed(输入嵌入)Position Embed(位置嵌入)单词种类数Position Embed元素代表什么意思定义和基本概念元素的具体含义:原创 2024-10-30 18:15:29 · 14 阅读 · 0 评论 -
协同推理:模型切分算法;任务调度算法
协同推理算法涉及模型切分算法和任务调度算法,它们的主要优化目标包括性能、动态环境中推理延迟的鲁棒性和能耗等。模型切分算法旨在将复杂的深度学习模型划分为多个部分,以便在多个设备上并行处理,从而加速推理过程并减少计算成本。综上所述,协同推理的算法涉及模型切分和任务调度两个方面,并通过多种优化策略来实现性能提升、推理延迟的鲁棒性和能耗降低等目标。任务调度算法负责将切分后的模型部分分配给不同的设备进行处理,以确保推理任务能够高效、准确地完成。这些算法通常会考虑设备的。原创 2024-10-28 20:42:57 · 93 阅读 · 0 评论 -
联邦学习结合协同推理
此外,随着大模型时代的到来,联邦学习可以用于训练大模型,同时大模型也可以用于产生联邦学习所用的训练数据。模型异构联邦学习为实现大小模型之间的知识传递提供了可行方案,但在参数量巨大的模型中确定每部分参数的作用仍然是一项具有挑战性的任务。因此,未来的研究可以关注于如何优化模型参数的选择和分配,以实现更高效的知识传递和模型更新。未来的研究可以借鉴协同推理领域的模型切分优化算法来对联邦分离式学习的性能和能耗等指标进行优化,以实现更加高效和智能的联邦学习框架。此外,随着分离式学习思路的引入,在AIoT应用场景中,原创 2024-10-28 20:42:32 · 61 阅读 · 0 评论 -
算网构建关键技术与实践
任务调度与云网协同性能优化高效能资源管理与服务网络跨中心数据并行处理与计算跨中心架构下的大模型并行训练算力网络安全与数据溯源原创 2024-10-20 17:36:24 · 136 阅读 · 0 评论 -
All-reduce,AIl-to-all
综上所述,优化All-reduce和AI 1-to-all通信效率需要综合考虑算法选择、硬件加速、数据划分和聚合策略、通信次数和数据量等多个方面。通过合理的优化措施,可以显著提高分布式系统的整体性能。优化All-reduce通信效率对于提高分布式系统的整体性能至关重要。选择适合当前网络拓扑和数据规模的算法,可以显著提高All-reduce的通信效率。在AI系统中,1-to-all通信通常指的是将。All-reduce是一种在分布式计算中。原创 2024-10-20 17:29:23 · 41 阅读 · 0 评论