2020CCPC长春D. Meaningless Sequence(思维+数位DP)

题目链接:http://codeforces.com/gym/102832/problem/D
解题思路:
可以发现一个数的大小与它的二进制表示中的1的个数有关,
a=c^(二进制中1的个数)
那么题目就转化为求所有数中1的个数
使用的是数位dp的方法,枚举1的个数来分配。
对于没有上限要求的x长度串中分配y个1的方案数直接可以使用组合数C(y,x)

#include<iostream>
#include<cstdio>
#include<string.h>
#include<string>
using namespace std;
#define ll long long 
const int mod = 1e9 + 7;
ll ans;
int m;
string a;
int sz;
ll c[3100][3100]; //组合数
int num[3100];
ll fastpow(ll base, ll n, ll mod) {
	ll ans = 1;
	while (n) {
		if (n & 1) ans *= base % mod, ans %= mod;
		base *= base, base %= mod;
		n >>= 1;
		
	}
	return ans % mod;
}

void init() {
	cin >> a;
	cin >> m;
	sz = a.size();
	for (int i = 0; i <= sz; i++) {
		c[i][i] = c[i][0] = 1;
		for (int j = 1; j < i; j++) {
			c[i][j] = (c[i - 1][j] + c[i - 1][j - 1])%mod;
		}
	}
}
ll helper(int pos, int limit, int cnt, int k) {
	if (pos == -1)
		return cnt==k;
	if (!limit) {
		if (cnt <= k)
			return c[pos + 1][k - cnt];
		else
			return 0;
	}
	ll res = 0;
	int up = limit ? num[pos] : 1;
	for (int i = 0; i <= up; i++) {
		res += helper(pos - 1, limit && i == up, cnt+i, k) % mod;
		res %= mod;
	}
	return res;
}
void solve() {
	for (int i = 0; i < sz; i++) 
		num[i] = a[sz - i - 1] - '0';
	ll base = 1;
	for (int i = 0; i <= sz; i++) {  //枚举1的个数
		ans += base * helper(sz - 1, 1, 0, i) % mod;
		ans %= mod;
		base *= m;    
		base %= mod;
	}
	cout << ans << endl;
}
int main() {  
	init();
	solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Buyi.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值