LeetCode Top Interview Questions 88. Merge Sorted Array (Java版; Easy)

welcome to my blog

LeetCode Top Interview Questions 88. Merge Sorted Array (Java版; Easy)

题目描述
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.

Note:

The number of elements initialized in nums1 and nums2 are m and n respectively.
You may assume that nums1 has enough space (size that is greater or equal to m + n) to hold additional elements from nums2.
Example:

Input:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6],       n = 3

Output:[1,2,2,3,5,6]

第一次做; 最优解; 空间复杂度O(1); 有序数组, 往往可以考虑使用双指针; 其实归并过程就是双指针, 但是需要额外空间, 本题的特点是nums1很长, 所以可以从后往前遍历, 这样就不用额外空间了; 核心:归并(双指针), 从后前往!
class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1=m-1, p2=n-1, p=nums1.length-1;
        //从后往前归并
        while(p1>=0 && p2>=0)
            nums1[p--] = nums1[p1] >= nums2[p2] ? nums1[p1--] : nums2[p2--];
        while(p2>=0)
            nums1[p--] = nums2[p2--];
    }
}
第一次做; 归并排序的归并过程, 务必掌握基础! 空间复杂度O(m), 这道题应该是想要得到空间复杂度O(1)的解法
/*
归并排序的归并过程
*/
class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int[] arr = new int[m];
        //空间复杂度O(m)
        // 下面这个for循环可以用一句话实现: System.arraycopy(nums1, 0, arr, 0, m);
        for(int i=0; i<m; i++)
            arr[i] = nums1[i];

        int p1=0, p2=0, p=0;
        while(p1<m && p2<n){
            //下面这个if else可以用一句话实现nums1[p++] = arr[p1]<=nums2[p2] ? arr[p1++] : arr[p2++];
            if(arr[p1]<=nums2[p2]){
                nums1[p++] = arr[p1++];
            }
            else{
                nums1[p++] = nums2[p2++];
            }
        }
        //可以用System.arraycopy()方法
        while(p1<m)
            nums1[p++] = arr[p1++];
        while(p2<n)
            nums1[p++] = nums2[p2++];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值