welcome to my blog
剑指offer面试题64(java版):求1+2+…+n
题目描述
求1+2+3+…+n,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。
class Solution {
public int sumNums(int n) {
int sum = n;
boolean bool = n==1 || (sum = n + sumNums(n-1)) > 0;
return sum;
}
}
第三次做, 短路原理; ||不能单独使用, 必须付给一个boolean类型的变量; 要会 boolean b = (a = 3) > 0的写法, 先把3赋给a,再判断a是否大于0, 将判断结果赋值给b
public class Solution {
public int Sum_Solution(int n) {
int sum=1; //初始为1是作为base case的
boolean flag = n==1 || (sum = n+Sum_Solution(n-1)) > 0;
return sum;
}
}
第二次做, 使用递归替代循环,从而实现累加; 使用&&的短路特点进行base case判断; boolean flag = (n>1): 先判断n是否大于1,再把true/false赋给flag, &&中最后判断flag是true还是false; (temp = temp + Sum_Solution(n-1))>0: 先把等号右边的值赋给temp, &&中最后判断temp是否大于0; 也就是判断的都是左值
public class Solution {
public int Sum_Solution(int n) {
int temp = n;
boolean flag = (n>1) && (temp = temp + Sum_Solution(n-1))>0;
return temp;
}
}
第二次做, 观察等差数列求和公式, 使用:加法, 指数, 移位实现
public class Solution {
public int Sum_Solution(int n) {
if(n<1)
return 0;
return (n+ (int)Math.pow(n,2)) >> 1;
}
}
利用指数,加法,移位
- 注意移位操作只能用在整型数据类型上
public class Solution {
public int Sum_Solution(int n) {
return (n+(int)Math.pow(n,2))>>1; //只能对整型进行移位操作
}
}
短路原理实现递归终止判断
public class Solution {
public int Sum_Solution(int n) {
int temp = n;
boolean flag = (n>0) && (temp = temp + Sum_Solution(n-1))>0; // &&右边的大于0是什么操作?
return temp;
}
}