Floyd算法求解最短距离

本文介绍了Floyd算法用于求解最短距离的方法。从问题出发,解析了算法步骤,包括邻接矩阵表示图、逐步寻找更短路径的过程,并探讨了算法的时间复杂度为O(n^3)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Floyd算法求解最短距离

1. 问题
用Floyd算法求解下图各个顶点的最短距离。写出Floyd算法的伪代码和给出距离矩阵(顶点之间的最短距离矩阵)。
在这里插入图片描述
2. 解析
1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i][j]=d,d表示该路的长度;否则G[i][j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i][j]表示从Vi到Vj需要经过的点,初始化D[i][j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i][j] = min( G[i][j], G[i][k]+G[k][j] ),如果G[i][j]的值变小,则D[i][j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V1到V3的路径D(1,3)=6则说明V1与V3直接相连的距离为6。而D(1,2)+D(2,3)=5
从V1到V3经过V2,路径为{V1,V2,V3}的距离是5,小于D(1,3)则需要更新最短道路信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值