CNN
文章平均质量分 66
LittleStudent12
这个作者很懒,什么都没留下…
展开
-
论文:《Age and Gender Classification using Convolutional Neural Networks》
深度学习(十四)基于CNN的性别、年龄识别作者主页Age and Gender Classification Using Convolutional Neural Networks - Demo数据地址:http://www.cslab.openu.ac.il/personal/Hassner/adiencedb/AdienceBenchmarkOfUnfilteredFacesF...转载 2018-06-21 14:29:30 · 1936 阅读 · 0 评论 -
基于 CNN的年龄和性别检测《age and gender classification using CNN》
基于 CNN的年龄和性别检测《age and gender classification using CNN》Getting the known gender based on name of each image in the "Labeled Faces in the Wild" dataset. (Tensorflow版本)路径问题我解决了很久,最后改写该脚本,使用绝对路径 by k...原创 2018-06-26 18:22:11 · 2473 阅读 · 1 评论 -
caffe中卷积网络norm层的解释
layers { name: "norm1" type: LRN bottom: "pool1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 }}Local Response Normalization (LRN)层此层是对一个输入的局部区域进行归一化,达到“侧抑制...原创 2018-06-25 11:11:15 · 3761 阅读 · 0 评论 -
【论文理解】ArcFace: Additive Angular Margin Loss for Deep Face Recognition(InsightFace)
【论文理解】ArcFace: Additive Angular Margin Loss for Deep Face Recognition(InsightFace)论文地址:https://arxiv.org/abs/1801.07698github:https://github.com/deepinsight/insightface 这篇论文基本介绍了近期较为流行的人脸识别模型,lo...转载 2018-06-25 09:29:48 · 677 阅读 · 0 评论 -
卷积神经网络CNN原理详解(一)——基本原理
卷积神经网络CNN原理详解(一)——基本原理神经网络的预备知识 为什么要用神经网络?特征提取的高效性。 大家可能会疑惑,对于同一个分类任务,我们可以用机器学习的算法来做,为什么要用神经网络呢?大家回顾一下,一个分类任务,我们在用机器学习算法来做时,首先要明确feature和label,然后把这个数据"灌"到算法里去训练,最后保存模型,再来预测分类的准确性。但是这就有个问题,即我们需要实...转载 2018-06-25 09:22:32 · 2218 阅读 · 0 评论 -
详细解释CNN卷积神经网络各层的参数和链接个数的计算
详细解释CNN卷积神经网络各层的参数和链接个数的计算卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。 图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这...转载 2018-06-25 09:22:41 · 1058 阅读 · 1 评论 -
详解卷积神经网络(CNN)
详解卷积神经网络(CNN)详解卷积神经网络CNN概揽Layers used to build ConvNets卷积层Convolutional layer池化层Pooling Layer全连接层Fully-connected layer卷积神经网络架构Layer PatternsLayer Sizing PatternsCase Studies参考卷积神经网络(Convolutional Neur...转载 2018-06-25 09:22:14 · 5565 阅读 · 0 评论 -
卷积神经网络工作原理直观的解释
1、卷积神经网络工作原理做一个直观的解释2、Architecture of Convolutional Neural Networks (CNNs) demystified3、机器视角:长文揭秘图像处理和卷积神经网络架构4、手写体识别网络结构剖析可视化作者:机器之心链接:https://www.zhihu.com/question/39022858/answer/203073911来源:知乎著作权...转载 2018-06-22 10:55:07 · 16095 阅读 · 5 评论 -
从神经网络到卷积神经网络(CNN)
从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的:那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进。比如下图中就多了许多传统神经网络没有的层次。 卷积神经网络的层级结构 • 数据输入层/ Input layer • 卷积计算层/ CONV layer • ReLU激励层 / ReLU layer...转载 2018-06-22 10:16:30 · 552 阅读 · 0 评论 -
cnn中的权值共享
cnn中权值共享理解第一步,针对一个神经元,一幅640*360图像,一个神经元要对应640*360个像素点,即一个神经元对应全局图像,全连接的话一个神经元就有640*360个参数;第二步,然而,图像的空间联系是局部的,就像人是通过一个局部的感受野去感受外界图像一样,每一个神经元都不需要对全局图像做感受,每个神经元只感受局部的图像区域,然后在更高层,将这些不同局部的神经元综合起来就可以得到全局信息。...转载 2018-06-22 10:10:23 · 946 阅读 · 0 评论 -
CNN卷积神经网络入门-吴恩达
吴恩达deeplearning之CNN—卷积神经网络入门1.边界检测示例假如你有一张如下的图像,你想让计算机搞清楚图像上有什么物体,你可以做的事情是检测图像的垂直边缘和水平边缘。 如下是一个6*6的灰度图像,构造一个3*3的矩阵,在卷积神经网络中通常称之为filter,对这个6*6的图像进行卷积运算,以左上角的-5计算为例 3*1+0*0+1*-1+1*1+5*0+8*-1+2*1+7*0+2*-...转载 2018-06-22 09:45:12 · 833 阅读 · 0 评论 -
卷积神经网络中feature map的含义
在每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起,其中每一个称为一个feature map。在输入层,如果是灰度图片,那就只有一个feature map;如果是彩色图片,一般就是3个feature map(红绿蓝)。层与层之间会有若干个卷积核(kernel),上一层和每个feature map跟每个卷积核做卷积,都会产生下一层的一个feature map。...原创 2018-06-21 16:30:16 · 25660 阅读 · 1 评论 -
caffe模型ensemble的方法
dlcv_for_beginners/random_bonus/multiple_models_fusion_caffe/在Caffe中实现模型融合https://blog.csdn.net/qq_36620489/article/details/78847401https://github.com/frombeijingwithlove/dlcv_for_beginners/tree...转载 2018-07-13 11:48:24 · 1033 阅读 · 0 评论