weightOneMillion
学海无涯,而我是沧海一粟
展开
-
Paddleseg模型——OCRNet模型解读
语义分割是一项密集像素预测任务,研究重点在于解决逐渐衰减的特征图尺寸和需要原图尺寸的预测之间的矛盾,因此图像中每个像素的上下文信息是极其重要的。物体的上下文信息旨在显式增强物体信息,通过计算一组物体的区域特征表示,并根据物体区域特征表示与像素特征表示之间的相似度将这些物体区域特征表示传播给每一个像素。将像素的标签看作是像素所在物体的标签,通过对应的物体区域来表示以此加强像素的表征。原创 2023-06-27 16:18:53 · 606 阅读 · 0 评论 -
哨兵2号数据下载与利用Python处理(波段融合、降采样、可视化、裁剪等)全过程详解
哨兵-2号卫星携带一枚多光谱成像仪(MSI),高度为786km,可覆盖13个光谱波段,幅宽达290千米。地面分辨率分别为10m、20m和60m、一颗卫星的重访周期为10天,两颗互补,重访周期为5天。从可见光和近红外到短波红外,具有不同的空间分辨率,在光学数据中,哨兵-2号数据是唯一一个在红边范围含有三个波段的数据,这对监测植被健康信息非常有效。13个波段中蓝色 (B2)、绿色 (B3)、红色 (B4) 和近红外 (B8) 波段具有 10 米的分辨率;原创 2023-06-21 11:14:33 · 2355 阅读 · 0 评论 -
paddleseg模型解说——fcn
FCN网络全称为Fully Convolutional Networks,按字面意思就是全部都是卷积的网络,没有全连接层。FCN是在论文《Fully convolutional networks for semantic segmentation》提出的。FCN之所以可以对图像进行分割,是因为实现了像素级分类。在上图中,跟不同的层融合得到的效果不同,解释如下:① FCN-32s代表的是:不采用跳跃结构,直接在conv6-7后面使用32倍的上采样得到32x32的输出。原创 2023-06-13 11:55:57 · 1173 阅读 · 0 评论 -
sa:segment anything Demo学习与介绍
1、2、选择完图片之后,会进入下面的界面,进行添加标记或者移除3、点击,分割点击AddMask可以进行多个标记。原创 2023-05-25 17:37:48 · 1170 阅读 · 0 评论 -
labelme标注数据集,并利用paddleseg完成标注数据的准备工作
1、创建labelme虚拟环境先检查python的版本python - V使用命令创建虚拟环境2、激活虚拟环境3、安装labelme。原创 2023-05-07 12:01:33 · 799 阅读 · 0 评论 -
MSNet网络结构与代码搭建深入解读
1、首先,将多光谱遥感图像的波段分为可见光和不可见光两组,然后进行分组同步特征提取;原创 2023-04-20 21:41:30 · 1009 阅读 · 1 评论 -
MSNet:针对遥感图像的多光谱语义分割网络【论文翻译+代码解读】
在遥感图像自动解译的研究中,基于深度卷积神经网络的语义分割得到了快速的发展和应用,特征分割精度和网络模型泛化能力逐步提高。然而,大部分网络设计主要面向遥感图像的三个可见RGB波段,旨在能够直接借鉴成熟的自然图像语义分割网络和预训练模型,但同时造成不可见光谱波段如**近红外(NIR)**遥感图像的浪费和丢失。结合多光谱数据在区分水和植被等典型特征方面的优势,我们提出了一种新的深度神经网络结构,称为多光谱语义分割网络(MSNet),用于多分类特征场景的语义分割。原创 2023-04-13 17:19:49 · 1155 阅读 · 0 评论 -
SGCN代码阅读
遥感影像道路提取code地址: https://github.com/tist0bsc/SGCN。原创 2023-03-10 16:53:12 · 463 阅读 · 1 评论 -
[遥感影像]巨图tif处理出小分片
一张完整的tif遥感影像图片过于巨大大,所以经常选择将其切分成等份的小块的补丁图片。原创 2023-03-10 15:00:24 · 326 阅读 · 0 评论 -
遥感影像道路提取算法——SGCN
用于从高分辨率遥感图像(TGRS)中提取复杂环境中道路的分割深度可分离图卷积网络摘要:高分辨率遥感图像的道路信息在各个领域得到广泛应用,基于深度学习的方法有效地显示了较高的道路提取性能。然而,在高分辨率遥感图像中,检测柏油路封闭或树木覆盖的道路,仍存在一些挑战,限制了提取的准确性:1)道路之间的阶级内差异较大,城市物体,特别是道路和建筑物之间的阶级间差异不明显;2)被树木、阴影和建筑物遮挡的道路难以提取;3)道路缺乏高精度遥感数据集。原创 2023-03-10 14:57:22 · 3126 阅读 · 1 评论 -
echonet-dynamic代码解读
一共是这些代码,我们主要看echo.py,segmentation.py,video.py,config.py。原创 2023-02-15 17:04:33 · 1505 阅读 · 0 评论 -
dynamic-Echonet左心室语义分割——学习记录
默认情况下,EchoNet Dynamic假设数据副本保存在此目录中名为a4c-video-dir/的文件夹中。可以通过创建名为echonet.cfg的配置文件来更改此路径(示例配置文件为example.cfg)。作者分享了一组10030张超声心动图图像,用于训练EchoNet Dynamic。使用OpenCV和pydicom对这些图像进行了预处理,包括从DICOM格式到AVI格式的视频的识别和转换。更多信息请访问https://echonet.github.io/dynamic/.原创 2023-02-15 14:40:57 · 1930 阅读 · 1 评论 -
paddleseg推理预测文件解析predict.py
经过预测后,我们得到的是默认color map配色的预测分割结果。参数解析可以看到我们在最后添加了 --custom_color 0 0 0 255 255 255,这是什么意思呢?在RGB图像中,每个像素最终呈现出来的颜色是由RGB三个通道的分量共同决定的,因此该命令行参数后每三位代表一种像素的颜色,位置与label.txt中各类像素点一一对应。如果使用自定义color map,输入的color值的个数应该等于3 * 像素种类(取决于你所使用的数据集)。原创 2023-02-08 11:03:17 · 692 阅读 · 0 评论 -
PaddleSeg训练文件解析
paddleseg原创 2023-02-07 19:57:49 · 885 阅读 · 0 评论 -
PaddleSeg整体介绍
paddleseg飞桨旗下主要用于图像分割的开发套件,配置和使用都很简单方便,本篇基于paddleseg2.3进行学习记录与讲解。,其中包含使用文档,本篇基于使用文档和查阅的资料进行学习记录。首先paddleseg主要包含以下几个目录:configs:保存不同网络的配置文件。(主要修改的地方)docs:文档paddleseg:PaddleSeg核心代码,包含训练、评估、推理等文件。(核心的文件)tools:工具脚本train.py:训练入口文件eval.py:评估模型文件。原创 2023-02-07 19:45:29 · 752 阅读 · 0 评论