推荐系统
文章平均质量分 80
推荐系统学习
weightOneMillion
学海无涯,而我是沧海一粟
展开
-
推荐系统(4)-基于内容的推荐系统(Python)
1介绍基于推荐系统(4)-基于内容的推荐系统的学习基于内容推荐的方法特别适用于文本领域,比如新闻的推荐等等。核心:首先构造商品画像,之后根据此画像来寻找最相似的其他商品。基本思想:给用户推荐与其曾经喜爱的物品相似的物品(基于物品自身的属性,而ItemCF是指喜欢物品A的用户一般都喜欢物品B,那么可以给喜欢物品A但是还没有发生用户行为的其他人推荐物品B)2基于内容推荐系统的算法原理2.1相似度计算那又如何计算相似度呢?答:转换成了向量的形式,计算两个向量之间的相似度。最经典的评估方法就是使用余原创 2023-05-07 15:59:19 · 580 阅读 · 0 评论 -
推荐系统(2)-协同过滤CF(基于Python)
1介绍基于推荐系统(2)-协同过滤的学习2基于用户的协同过滤(UserCF)2.1UserCF算法原理UserCF算法核心主要分两步:找到与目标用户A兴趣相似的用户M;得到用户A相似用户M评分物品中用户A没有进行评分或是浏览购买过的Item,并推荐给用户A;2.2案例:基于UserCF算法的电影推荐系统数据地址:MovieLens 1M Dataset:https://grouplens.org/datasets/movielens/1m/3基于物品的协同过滤(ItemCF)3.1It原创 2023-05-07 15:59:25 · 185 阅读 · 0 评论 -
个性化推荐学习(mahout)
参考链接:个性化推荐算法总结:https://blog.csdn.net/Yasin0/article/details/89、原创 2021-11-01 16:01:11 · 1388 阅读 · 0 评论 -
gensim实战01——word2vec
介绍参考使用维基百科训练简体中文词向量:http://www.noobyard.com/article/p-cogkoxjj-kq.html原创 2021-12-01 15:18:57 · 2221 阅读 · 0 评论 -
机器学习——sklearn学习
参考链接:主要基于scikit-learn (sklearn) 官方文档中文版:https://sklearn.apachecn.org/#/7种文本特征提取方法:http://blog.sina.com.cn/s/blog_b8effd230102zu8f.htmlsklearn的train_test_split()各函数参数含义解释(非常全):https://www.cnblogs.com/Yanjy-OnlyOne/p/11288098.html1介绍主要是一些API的使用,详细可以看机器学习原创 2021-11-11 15:06:28 · 3264 阅读 · 0 评论 -
推荐系统常用数据集
推荐系统常用数据集首先需要说明一下推荐系统数据中的几个类别:Item: 即我们要推荐的东西,如产品、电影、网页或者一条信息片段User:对item进行评分以及接受推荐系统推荐的项目的人Rating:用户对item的偏好的表达。评分可以是二分类的(如喜欢和不喜欢),也可以是整数(如1到5星)或连续(某个间隔的任何值)。 另外,还有一些隐反馈,只记录一个用户是否与一个项目进行了交互。在文章 The Nine Must-Have Datasets for Investigating Recommende转载 2021-11-24 15:53:40 · 4103 阅读 · 2 评论 -
推荐系统(3)—基于标签的推荐系统(Python)
1介绍基于推荐系统(3)-基于标签的推荐系统的学习。2基于标签的推荐系统意义可解决冷启动问题:新用户APP下载后,选取感兴趣的关注标签,系统可自动推送筛选。例如:豆瓣的电影标签、书籍标签;网易云音乐的音乐标签;bilibili视频标签;抖音等短视频APP;3数据标注与关键词提取关键词是指能够反映文本语料主题的词语或短语。在不同的业务场景中,词语和短语具有不同的意义。例如:从电商网站商品标题中提取标签时,词语所传达的意义就比较突出。从新闻类网站中生成新闻摘要时,短语所传达的意义就比较原创 2021-11-24 16:29:48 · 4093 阅读 · 0 评论 -
gensimAPI学习——word2vec
models.word2vec – Word2vec embeddings0介绍该模块使用高度优化的C例程、数据流和Python接口实现word2vec算法系列。word2vec算法包括skip gram和CBOW模型,使用分层softmax或负采样:Tomas Mikolov等人:向量空间中单词表示的有效估计,Tomas Mikolov等人:单词和短语的分布式表示及其组成性。0.1其他embeddings在Gensim中,训练单词向量的方法不止Word2Vec。例:Doc2Vec,FastTex原创 2021-12-01 16:10:27 · 1395 阅读 · 0 评论 -
机器学习——Surprise
1介绍从这里开始学习:https://surprise.readthedocs.io/en/stable/prediction_algorithms_package.html2原创 2021-11-26 17:10:43 · 2040 阅读 · 0 评论 -
推荐系统(1)-业界推荐系统架构(基于Python)
推荐系统(1)-业界推荐系统架构:https://zhuanlan.zhihu.com/p/93183929原创 2021-11-24 10:57:15 · 1078 阅读 · 0 评论