Cracking GO-许峰雄博士的围棋思路
  文章来源:Cracking GO, Feng - Hsiung Hsu, IEEE Spectrum October 2007.

    原文地址:http://spectrum.ieee.org/oct07/5552,有个地方有些评论
    先转述一下这篇文章的主要观点。正如国际象棋(chess)在70年代,从selective search到brute search转变就能够走出低估一样,围棋(Go)也可以这样做,而这正是现在围棋计算机博弈水平太差的原因所在。使用brute search,主要包括alpha-beta剪枝、null move以及置换表等基于"method of analogy"的方法,同时借助于10年内芯片技术的发展(Moore定律),可以在10年内战胜围棋世界冠军。
   有人认为这篇文章非常provocative。
    chess跟Go的复杂度远远不同,在chess中所能使用的这些search优化技术在Go中使用的效果如何不能简单类推。如评论中所言, 因为Go中很少出现一下子就确定胜负的局面,所以很难直接应用大规模剪枝的算法,其实根本也是在于evaluation函数。许博士的想法是绕过这个 evaluation函数,因为它费力还不讨好,不是现有的计算所擅场的,那就扬长避短,借助现有强大的计算能力而规避它的评价能力,实际上,该文中也说 了“Selective search never really made progress”,selective search的基础就是强大的evaluation函数。通过规避这个weak的evaluation函数,而使用强大的计算能力获得strong的 search能力,这是许博士这篇文章的核心。
    事实上,由于chess和Go的不同,比如棋盘大小、游戏规则,导致以前在chess中所采用的(相对)简单计算得到evaluation值的方法失效 了,转而借助与强大的search,一方面也是不得已而为止。但是,强大的计算能力是否就是万能的钥匙呢?我不认为许博士的文章让我信服,以10年之后的 计算能力就能够制造出这么强大的程序,以那条路子走下去,很可能,会发现,evaluation函数成为了瓶颈。正如,文章的附页http://spectrum.ieee.org/oct07/5552/monte中,许博士认为Monte Carlo算法对9×9有效,并不代表对19×19有效(这个我还不确信)一样,如何能够那么乐观的对于8×8的chess老路就一定能解决19×19的Go呢?
    另外,有人也提出,假使按这个路子造出了能够crack 19×19的围棋程序,如果不能crack 23×23的围棋程序,是不是也需要等几年到Moore定律发挥到可以战胜的时候呢?
    这就回到了问题的关键-evaluation函数。引用一段话
"It was a watershed event, but it doesn't have to do with computers becoming intelligent,"
     -Douglas Hofstadter, Professor of computer science at Indiana University
    即使用这些方法战胜了围棋世界冠军,也只是说明了程序制造者的伟大,而没有说明产生了一种新的智能,因为程序只知道0和1的运算,而不知道它真正在做什 么。在围棋程序的构造中,如何发现发掘人类智能的本质,或者证明以现有的机器无法模拟、制造类似人类的智能,甚至构造出新的智能模型,这些才是根本的,而 战胜世界冠军只是个副产品,当然要是那么容易就不会有“never really made progress”这句话了。
   我认为许博士可能是从偏重硬件的角度对围棋做研究,而有更大意义的是对这个”never“的领域的突破,即使需要花费更长的时间。
阅读更多
想对作者说点什么? 我来说一句

图片世界雄峰

2007年04月16日 1.37MB 下载

应用随机过程-华南理工大学

2015年11月25日 4.98MB 下载

没有更多推荐了,返回首页

不良信息举报

Cracking GO-许峰雄博士的围棋思路

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭