python中pandas处理转换数据类型的两种方法

使用astype()转换

data['列'].astype('object')
data['列'].astype('float')
data['列'].astype('int')
data['列'].astype('bool')
  • 数据列中不可存在NaN或者字符串
  • 如果是转int或者float列中每一个值只能是看起来像数字

使用to_numeric()专门转换为数字

pd.to_numeric(data['列'], errors='coerce').fillna(0)
errors :{‘ignore’, ‘raise’, ‘coerce’}, 默认为“raise”
	如果为“ raise”,则无效的解析将引发异常。
	如果为“coerce”,则将无效解析设置为NaN替换。
	如果为“ ignore”,则无效的解析将什么都不做直接忽略

使用to_datetime()专门转换为日期

时间合成:

pd.to_datetime(data[['day', 'month', 'year']])

字符串列转日期:

pd.to_datetime(data)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值