深度学习涉及到的线性代数知识点总结(一)


一、什么是线性?

       在平面直角坐标系中,一个二元一次方程所绘制的几何图形是一条直线,线性代数里的“线性”即来源于此。其实对于三元一次方程,在直角坐标系中的几何图形是一个平面。对于多元一次方程,其几何图形应是一个超平面。

二、线性方程组

       线性方程组有多组一元方程组构成。
在这里插入图片描述

三、线性可分与线性不可分

线性可分:一条直线可以分开的问题
线性不可分:一条直线不可以分开的问题。
在这里插入图片描述
● 区分线性可分和线性不可分的方法

  1. 一条直线
  2. 多条直线(曲线)
  3. 升维度

● 线性可分和线性不可分的转换
       线性可分与线性不可分的辩证统一思想:在低维空间中数据线性不可分,通过映射到高维空间中是线性可分的;而高维空间中线性可分返回到低维空间中又是线性不可分的。所以这两者是矛盾而统一的。
在这里插入图片描述
总结:判断一堆数据是否能够线性可分的关键在于数据所在的维度。

四、数据的维度

● 标量

       0维数据,只有大小,没有方向。

● 向量(矢量)

       向量既有大小,又有方向。向量的长度称为向量的模长。向量的大小使用范数来衡量。

● 矩阵

       矩阵有大小,且有两个方向。矩阵的大小用行列式衡量

● 张量

       张量指的是三维及三维以上的数据。张量有大小及对应的维度。

五、范数

       范数是一种强化了的距离概念,它在定义上比距离多了一条数乘的运算法则。有时候为了便于理解,我们可以把范数当作距离来理解。
在这里插入图片描述

六、行列式

        只有方阵才有行列式。左上角到右下元素相乘-右上角到左下角元素相乘,依次退位计算,所有元素都要参与计算。
       几何意义: 2* 2的方阵的行列式就是两个向量围成的平行四边形的面积,3*3的方阵的行列式就是三个向量围成的方体的体积。

七、常见矩阵的类型

● 方阵
       行数和列数相等

● 对角阵
       对角线为非0元素,其他位置都为0;对角阵的转置等于自身;对角阵和其他向量或矩阵相乘计算非常方便,只需将向量或矩阵的元素和对角阵非零元素依次相乘即可。

● 单位矩阵
       满足对角阵,但是对角线的元素为1;任何向量或矩阵乘以单位矩阵都等于自身。

● 对称矩阵
       指以主对角线为对称轴,各元素对应相等的矩阵,转置等于本身。

● 正交阵
       满足对称阵,一个矩阵和自身的转置矩阵相乘,结果为一个单位矩阵,那么这个矩阵就称为正交矩阵。例: AAT=E, E单位矩阵,那么A就是正交矩阵。正交阵满足AT=A-1, 所以AA-1=E

● 0矩阵
       矩阵元素全为0

● 1矩阵
       矩阵元素全为1

● 奇异矩阵
       行列式等于0

● 非奇异矩阵
       行列式不等于0

● 稀疏矩阵
       大部分元素为0构成

● 稠密矩阵
       全部由非0元素构成

● 下三角矩阵
       主对角线以上都是零的方阵称为下三角矩阵

八、矩阵的计算

8.1 矩阵的加减法

  1. 两个形状大小一致的矩阵相加减,就是两个矩阵中对应的
    元素做加减。
  2. 两个形状完全不一样的矩阵是无法做加减法的。
  3. 矩阵和一个向量做加减运算的时候,向量的形状要满足和矩阵的行或者列的形状一致,向量才会做广播,变成一个形状和原矩阵一样的矩阵,再做运算。

8.2 数乘(叉乘)

       叉乘是向量的外积,也叫向量积。叉乘的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量组成的坐标平面垂直。在三维几何中,向量a和向量b的叉乘结果是一个向量,更为熟知的叫法向量,该向量垂直于a和b向量构成的平面。

       在3D图像学中,叉乘的概念非常有用,可以通过两个向量的叉乘,生成第三个垂直于a, b的法向量,从而构建X、Y、Z坐标系。

8.3 点乘

       点乘是向量的内积,也叫数量积。点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及b向量在a向量方向上的投影的长度,是一个标量。点乘反映着两个向量的“相似度”,两个向量越“相似”它们的点乘越大。
在这里插入图片描述
● 向量和向量点乘
条件:两个向量形状大小必须一致
规则:两个向量对应元素相乘之后再求和,结果是一个标量。

● 矩阵和向量点乘
条件:向量的形状要满足和矩阵的行或者列的形状一致。
规则:向量需要做和矩阵对应的行列变换,然后做矩阵相乘。

● 向量点乘不满足结合律: a*(bc)不等 于(ab)*c
● 数乘满足分配律: (1 + 2)a=1a+2a ,2(a+b)=2a+2b

8.4 矩阵相乘

● 矩阵的乘法的条件:满足第一个矩阵的列和第二个矩阵的行的形状相等的规则。

● 矩阵的乘法步骤:使用第一个矩阵的行元素分别对应乘以第二个矩阵的列元素,再求和,作为输出结果矩阵的第一个元素,以此类推。

九、矩阵求逆

● 概念
设A、B都是n阶方阵,如果存在n阶方阵B使得AB= BA=E,E为单位矩阵,则称A为可逆矩阵, 而称B为A的逆矩阵。则: B=A-1,所以: A*A-1=E

● 条件
必须是非奇异矩阵,必须是方阵,0不能做除数,奇异矩阵的行列式为0.

● 注意
非方阵可以求伪逆,将当前矩阵乘以它的转置变成方阵,再进行求逆。

● 推论

  1. 如果矩阵A可逆,则A-1*AT也可逆。
  2. (A-1)^ -1=A
  3. (AT)^-1=(A-1)T
  4. Y=W.X, W=Y/X=Y.X^-1
    伪逆: W=Y.XT/X.XT=(X.XT)^-1.XT.Y (最小二乘法)
    完整版最小二乘法: (X.XT+λI)^-1.XT.Y, I是单位矩阵, λ是系数,主要为了防止奇异矩阵的出现.

● 逆和伪逆

  1. 逆的运算相当于矩阵的除法运算。
  2. 只有非奇异方阵才有逆
  3. 伪逆是逆的推广,去除了方阵的限制。

十、内积与投影

在这里插入图片描述
在这里插入图片描述

十一、余弦相似度

在这里插入图片描述
● 公式
在这里插入图片描述
● 意义
       即计算个体间的相似程度,相似度度量的值越小,说明个体间相似度越小,相似度的值越大说明个体差异越大。

● 结论

  1. 夹角为0度 :此时向量A与向量B是最相似的,余弦相似度为1。
  2. 夹角为90度 :此时余弦相似度为0。
  3. 夹角为180度 :此时余弦相似度为-1,两个向量的方向完全相反。

十二、欧式距离

● 公式
在这里插入图片描述
● 概念
       欧式距离也称欧几里得距离,是最常见的距离度量,衡量的是多维空间中两个点之间的绝对距离。
       也可以理解为:m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值