出现梯度弥散、梯度爆炸的原因及解决办法

本文聚焦神经网络中的梯度弥散和梯度爆炸问题。梯度弥散指梯度消失,导数为0,会使网络学习性能下降,原因包括激活函数“饱和”等,可通过使用新激活函数等方法解决;梯度爆炸是因连续乘法出现大值,会导致模型无法收敛,可重设初始化权值、调小学习率来解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、梯度弥散

1.1 什么是梯度弥散?

梯度弥散就是梯度消失,导数为0

1.2 梯度弥散造成的问题

靠近输出层的隐藏层梯度大,参数更新快,所以很快就会收敛;
靠近输入层的隐藏层梯度小,参数更新慢,几乎就和初始状态一样,随机分布。

在这里插入图片描述
由于神经网络前几层的权重更新过慢,或者没有更新,从而导致了整个网络
的学习性能下降,达不到训练的标准。

1.3 梯度弥散造成的原因

  1. 激活函数的"饱和"。

  2. 样本中的奇异样本引起模型无法收敛。

  3. 使用反向传播算法传播梯度的时候,随着网络传播深度的增加,
    梯度的幅度会急剧减小,会导致浅层神经元的权重更新非常缓慢。
    不能有效学习。

  4. 从数学的角度看,是因为梯度连乘的问题,是梯度消失问题的所在。

  5. 学习率过大而导致模型震荡无法收敛。

1.4 梯度弥散的解决办法

  1. 使用ReLU,Leaky_ Relu等 激活函数替代Sigmoid。
  2. 网络层中的数据进行 batch normalization(批量标准化)。
  3. 数据归一化、数据清洗。
  4. 使用更好的网络,比如ResNet。
  5. 降低学习率。

二、梯度爆炸

1.1 什么是梯度爆炸?

梯度的衰减是有连续乘法导致的,如果在连续乘法中出现一个非常大的值,最后计算出的梯度就会很大,就想当优化到断崖处时,会获得一个很大的梯度值, 如果以这个梯度值进行更新,那么这次迭代的步长就很大,可能会一下子飞出了合理的区域。

1.2 梯度爆炸造成的问题

● 前面网络层的梯度通过训练变大,后面网络层的梯度指数级增大。
● 神经网络模型无法收敛,达不到训练结果。
在这里插入图片描述

1.3 梯度爆炸造成的原因

  1. 神经网络初始化的权值过大,每层网络反向求导的结果都大于1,
    这样梯度相乘就会变得更大。

  2. 学习率非常大而导致梯度爆炸

1.4 梯度爆炸的解决方式

  1. 重设初始化权值(指定正态分布采样)
  2. 学习率调小
梯度消失和梯度爆炸的发生原因主要与深度神经网络的结构和参数初始化有关。 梯度消失的原因是由于使用一些激活函数(如sigmoid、tanh)时,这些函数在输入较大或较小的时候,梯度会变得非常小,导致在反向传播时逐渐消失。此外,深度神经网络的层数过多时,梯度会逐层相乘,使得梯度值趋近于零。 梯度爆炸原因是由于网络中存在较大的权重或者在网络中使用了不稳定的操作(如指数运算),导致梯度在反向传播过程中指数级增长,超出了计算机所能表示的范围。 为了解决梯度消失和梯度爆炸问题,以下是一些常用的解决方法: 1. 权重初始化:使用合适的权重初始化方法,如Xavier初始化(根据输入和输出维度自适应地初始化权重)可以缓解梯度消失和爆炸问题。 2. 激活函数的选择:使用具有更好梯度性质的激活函数,如ReLU、LeakyReLU等,可以有效避免梯度消失问题。 3. 梯度裁剪:限制梯度的大小,防止梯度爆炸。可以通过设置一个阈值,在梯度超过该阈值时进行裁剪。 4. 正则化方法:如L1、L2正则化或者Dropout等,可以帮助减少过拟合,稳定网络训练过程。 5. Batch Normalization:对每个小批量数据进行归一化,有助于缓解梯度消失和梯度爆炸问题。 6. Residual Connections:引入跳跃连接,将输入直接与输出相加,可以缓解梯度消失问题。 7. 梯度监测:通过观察梯度的变化情况,及时发现和解决梯度消失和梯度爆炸的问题。 以上是一些常见的解决方法,根据具体情况可以灵活选择和组合使用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值