简单题也需要多看看题解,多看多学,总会有发现和收获!当我还在为这道简单题觉得不应该浪费时间时,没想到其“快速指针”的解法让我又陷入了沉思。
1. 题目

2. 分析
这题有很多方法,但是方法之间也存在优劣。如果本题要求在O(1)的时间复杂度下求解,该怎么做?本题的关键点就在于怎么判断一个数是已经计算过的?如果是已经计算过的,就说明这个数不是快乐数。
2.1 方法一
使用哈希表存储,从而记录这个数是否出现过。
空间复杂度:O(n)
2.2 方法二
不是快乐数那就说明计算过程是个环,也就是从数字n,经过若干次计算,又变成了数字n。难点在于证明当前的这个数是环的一部分(曾经出现过)。但难点是如果不靠记录曾经出现过的数,怎么判断当前这个数出现过呢?
方法肯定是有,而且很精妙!快慢指针。(想想怎么判断一个链表有环?)
空间复杂度:O(1)
3. 代码
3.1 代码1
class Solution:
    def isHappy(self, n: int) -> bool:
        vis = set()
        while(n != 1 and n not in vis):
            tmp = 0
            vis.add(n)
            while(n):
                tmp += (n%10) * (n%10)
                n = n // 10
            n = tmp
        if n == 1:
            return True
        return False
3.2 代码2
class Solution:
    def isHappy(self, n: int) -> bool:
        slow = n
        fast = self.next_number(self.next_number(n))
        print(fast)
        while(slow != fast):
            fast = self.next_number(self.next_number(fast))
            slow = self.next_number(slow)
        # 如果二者此时都是1,说明不是快乐数    
        if slow == 1:
            return True
        return False
    def next_number(self, n):
        total = 0
        while(n):
            total += (n%10) * (n%10)
            n = n//10  # 要整除
        return total
                
                  
                  
                  
                  
                            
                            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
                    
              
            
                  
					201
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
					
					
					


            