文章目录:
5.1 对称三相电路功率的计算(平均功率 无功功率 视在功率 瞬时功率)
来源:电路_西安交通大学_中国大学MOOC(慕课)、《电路》 西安交通大学 罗先觉/邹建龙 2022版 6小时
评价
讲的如何? 1.讲课方式:新颖、用心、形象、有趣 2.这么短的课时,可以覆盖这么广很不容易,内容精炼,讲的也通俗易懂 适合人群? 1.小白零基础入门:可以使你对基础知识和整个框架有一个认知 2.期末考试突击考试知识点:快速突击不挂科 3.考研知识点回顾:如果是学过有点基础,这种快速拉通知识点,应该就是完美教程 建议 1.前半部分电路KCL KVL等等电路的相关计算一定要搞清楚,自己理清思路 2.后半部分涉及很多公式 和 高数微分积分几何 以及少量 线性代数:如果想理解原理来龙去脉要花点时间 3.如果结合教材课本效果会更好 因为是快速入门 1.所以很少有公式推导 2.例题的讲解较少:讲的例题是是基础例题
整体框架
二阶电路之前:激励为直流的线性电路 二阶电路之后:激励为交流(正弦量)的线性电路
我的笔记
可以参考,因为很多公式和逻辑图,所以很多都是截图的形式记笔记! 我看完后感觉? 1.因为是小白,只能说使你有一个大致认识 2.想深入有一个106小时的课程和看配套书 3.如果想掌握还要自己花时间练题才行
一:电路模型和电路规律
1.电路概述
《电路》是一门介绍电路理论基本知识的课程 电路理论是研究电路中发生的电磁现象 并用电流、电压、电量、磁通等物理量描述其中的过程 电路有什么用? 电能量的产生、传输和使用(强电) 电信号的产生、传递和处理(弱电)
2.电路模型
实际电路:为完成预期目的而由电路部件和电路器件相互连接而成的电流通路装置 电源:电能和电信号的发生器 负载:用电设备 激励:一般称电源为激励 响应︰由激励在电路中产生的电压、电流 电路课程讨论对象︰是实际电路的电路模型 电路模型:是由理想电路元件相互连接成的一个系统 理想元件:是具有确定电磁性质并用精确数学定义表示的 理想导线:各理想元件的端子是用“理想导线”连接起来的 理想元件:分为二端、三端、四端元件等 建模:用理想电路元件或它们的组合模拟实际器件就是建立其模型,简称建模
3.基本电路物理量:电流、电压、电功率和能量
电荷(水滴):q 电流(水流):i 电压(水压):u 功:w 功率:p 能量:w 电流定义∶i = q/t = dq/dt 顾名思义∶电流指的是电荷的流动 学术定义︰单位时间内流过的电荷量 电压定义∶u = w/q = dw/dq 顾名思义︰电压指的是电荷的压力 学术定义:单位点电荷从一点移动到另外一点所做的功 功率定义︰单位时间内做的功 p = w/t = dw/dt = dw/dq * dq/dt = ui 能量:w = ∫pdt = ∫uidt
4.电流和电压的参考方向
规定正电荷的运动方向为电流的实际方向:现实是,难判断需要指定 电流的参考方向与实际方向的关系:一致 i>0;不一致i<0 电流参考方向的2种表示:箭头、双下标i_AB 规定电压的实际方向从高电位指向低电位。亦即电位降低的方向:现实是,难判断需要指定 正极性 +高电位 负极性 -低电位 电压的参考方向与实际方向的关系:一致 u>0;不一致u<0 电压参考方向的3种表示:箭头、+ - 、双下标u_AB 关联参考方向:元件或支路的u,i采用相同的参考方向称为关联参考方向() 反之,称为非关联参考方向(电流电压方向不一致,箭头遇到-) 电功率与电流电压参考方向的关系:p与u和i的方向密切相关(对一完整的电路中 发出的功率=吸收的功率) 电场力对电荷作功,元件吸收能量。电流的方向与电压相同: 关联参考方向;p>0吸收 p<0发出 电场力作负功,元件向外释放电能。电流的方向与电压相反:非关联参考方向;p<0吸收 p>0发出
5.电路元件—电阻
电阻是专门消耗功率的
电阻元件的元件特性——u与i的代数关系f(u,i)=O 线性电阻元件 在电压和电流取关联参考方向时:两端的电压和电流服从欧姆定律 u = R*i 符号 R为电阻元件的参数,称为电阻 电阻的单位为(欧姆,简称欧)大写Ω,小写ω 图形符号:R 公式 G = 1/R:称为电阻原件的电导 i = u/R = G*u:单位是S(西门子,简称西) 功率(吸收功率):p = u*i = i^R = u^2 / R 能量(耗能元件):(t0——>t1)∫R * i^2 (ξ) dξ 在电压和电流取非关联参考方向时:u = -R*i i = -G*u 电阻元件的特性称为伏安特性:它是通过原点的一条直线 开路与短路 对于电路中的一对端子1-1,端子1-1'之间断开时,相当于接R=∞的电阻 i=0,u≠0,称1-1'处于“开路” 端子1-1'用理想导线(电阻为零)连接起来,相当于接有R=0的电阻。 u=0,i≠0,称1-1'处被短路
6. 电路元件—电压源和电流源
| 电压源U_s:就是能够提供电压的电源 ⓛ 可以是直流源、交流源、还可以是其他形式 | 电压由自身确定,电流由外电路确定 不能短路(滑坡堵住)——>电流无穷大 ↑ 电流源I_s:就是能够提供电流的电源 ⊖ | 电压由外电路确定,电流由自身确定 不能开路(决 堤)——>电压无穷大
7.受控电源
受控电源定义∶电压或电流受其它电压或电流控制的电源 受控源不是实际的电路器件,而是由实际电路或器件抽象出来的电路模型 通常所说的电压源和电流源称为独立电源:其电压或电流由自身产生﹐不受其它电压电流控制 受控电压源 | 受控电流源 ↑ /\ /\ / |\ /__\ \ |/ \ / \/ \/ | | 引人受控源的作用 将具有电压电流控制关系的器件﹑设备转化为受控源模型 因而不再需要在电路中画出这些器件设备 受控电源模型可以简化电路分析
8.基尔霍夫(后面都要用这个方法)
K——基尔霍夫 V——电压 L——定律
8.1 基尔霍夫电流定律KCL
KCL基尔霍夫电流定律,即总电路节点电流流量和为零
流入电流=流出电流 电路中任一结点上所有电流的代数和为零 对于具有n个结点的电路:需要列写的独立KCL方程数为n-1
8.2 基尔霍夫电压定律KVL
KVL基尔霍夫电压定律,即总电路环路电压压降和为零
升压 = 降压 电场力做功与路径无关,这类似于重力做功与路径无关 在电路中,任一时刻,沿任一回路绕行,各支路电压的代数和等于零(根据方向正负那个先接触 就可以确定符号)
二:电阻电路的等效变换
1.电路的等效变换
对外等效,对内不等效 eg:串联电阻 = 相加和的大电阻
2.电阻的串联和并联
串联电阻R1 R2 = 相加的大电阻R1 + R2 并联电阻R1 R2 = 相加的大电阻R1*R2 / R1+R2
3.电压源、电流源的串联和并联
根据KCL和KVL对等式进行整理合并,然后进行替换(比如以前2个电阻现在用1个替换....)
4.实际电源的两种模型及其等效变换
U = IR公式也可以看出来 实际电压源:理想电压源和电阻(内阻)串联 实际电流源:理想电流源和电阻(内阻)并联 注意参数会变“通过KVL KCL计算:来改变电路结构 电压 和(串联) 电阻 = 电流 和(并联) 电阻
三:电阻电路的一般分析
1.回路电流法(利用KVL)
本质是KVL方程
支路:每一个二端元件称为一条支路 多个二端元件串联(电流相等)可视为一条支路 结点:支路与支路的连接点称为结点 多个等电位的结点可视为一个结点(中间没有阻挡) 路径:从一个结点到另一个结点所经过的支路集合 回路:从起点出发,终点又回到起点,所形成的闭合路径称为回路 要求中间经过的结点只能经过一次 网孔:能令回路中不另外含有支路的回路称为网孔 网孔数量等于=KVL独立方程数,所以,判断KVL独立方程数的简单方法是数网孔数量 互阻(相同方向取正 相反取负):共同都在用 自阻(永远为正):自己独有的几个组合起来的 右端电源电压(非关联取+ 关联取-):等式右边的电压(根据网孔的不同而不同)
2.结点电压法(利用KCL)
本质是KCL方程
以结点电压为独立变量列写电路方程的分析方法 参考结点:任意选择某一结点 独立结点:除开参考结点外的其他结点 结点电压:独立结点与参考结点之间的电压【之间的电压 不是传统意义上的电压】 参考极性:以独立结点为正,参考结点为负 结点电压法︰以结点电压为独立变量,列写独立结点的KCL方程,共有(n-1)个独立方程,称为结点电压方程 自电导 = 接在该点上所有支路的电导之和(没有阻挡 总为正) 互电导 = 两结点之间所有支路的电导之和(总为负值)G12 = G21 = -G2(结尾) 互电导因为结点之间没有电导 流入结点 = 电流源电流的代数和 流入结点电流源电流前取正号 流出结点电流源电流前取负号
I流入 = I流出
结点之间的电压
相连的电阻:分叉就要找相关的电阻(为正 自电导);不分叉就是结点之间的(为负 互电导)
独立结点的:一个点到其他结点包括自己,可以跨越
自电导(电阻):与之相连的电阻,没有阻挡
互电导:方向不影响,最后一个点取负数
流入结点:流入的电流
没有受控源
有受控源的结点电压方程:i_s4 = k_u2——> Gkj != Gjk
3.结点电压法和回路电流法比较
回路电流法:适用于独立回路较少的电路 结点电压法:适用于独立结点数较少的电路 简单电路:直接用KCL、KVL求解
四:电路定理
1.叠加定理
叠加定理:线性电路中,任一支路的电压或电流都等于各独立电源单独作用在此支路所产生电压或电流的叠加 线性电路:电路所建立方程中仅含有线性项的电路
2.替代定理
U I R相等的进行替换 注意:替代定理既适用于线性电路,也适用于非线性电路
3.戴维宁定理(替换电流)
电阻串联或并联都可以等效成一个电阻,称为等效电阻 如果一端口网络中仅含线性电阻和受控源 也可等效为一个电阻,称为等效电阻。记为R_eq 求等效电阻的方法:在端口加电压源,求电源电压和电流的比值 戴维宁定理的作用:简化电路 可将一个复杂的一端口网络等效为两个元件(电阻和电压串联——>替换电流 非关联方向)
先求开路电压,再求等效电阻
4.诺顿定理(替换电压)
电流和电压并联——>替换电压 诺顿等效电路可由戴维宁等效电路经电源等效变换得到 ①若一端口网络的等效电阻R_eq=0,该一端口网络只有戴维宁等效电路,无诺顿等效电路 R=0——>U=IR=0——>无诺顿等效电路 ②若一端口网络的等效电阻R_eq=∞,该一端口网络只有诺顿等效电路,无戴维宁等效电路 R=∞——>I=0——>戴维宁等效电路
求电流:电压源单独作用、电流源单独作用
求电阻:去掉电流 电压
5.最大功率传输定理
①最大功率传输定理用于一端口电路给定,负载电阻可调的情况 ②计算最大功率问题结合应用戴维宁定理或诺顿定理最方便
五:动态电路的时域分析
V——电压 C——电流(电流的单位是C) R——电阻
1.电容元件C F
电容器:两个导体极板,中间由绝缘材料隔开,构成一个电容器 在外电源作用下,正、负电极上分别带上等量异号电荷 撤去电源,电极上的电荷仍可长久地聚集下去,是一种储存电能的元件 电容元件定义:储存电能的两端元件 任何时刻其储存的电荷q与其两端的电压u能用q-u平面,上的一条曲线来描述 函数表示:f(u,q)=0
电容C
VCR微分形式
VCR积分形式
储能和功率
2.电感元件L H
电感L
VCR微分形式
VCR积分形式
储能和功率
3.动态电路的方程(符号)
动念电路:含有动态元件电容和电感的电路称为动态电路 过渡过程:当动态电路状态发生改变时,需经历一个变化过程才能达到新的稳定状态 产生的原因:电路含有储能元件L、C,电路在换路时能量发生变化 而能量的储存和释放都需要一定的时间来完成
4.动态电路的初始条件
对动态电路来说:初始条件就是电容的初始电压或电感的初始电流等 动态电路的初始条件对于电路随时间发展的行为影响也很大 求解动态电路的微分方程也必须知道电路变量的初始值 0+和0_是什么含义? 设开关在t=0时动作 0-指开关动作前的一瞬间 0+指开关动作后的一瞬间 开关动作耗费的时间长度是无穷小,可见0+ - 0_= ε 0+和0_从数学.上都近似为0 但从物理意义,上却有本质不同: 0+为开关动作后,0_为开关动作前
5.一阶电路
5.1 一阶电路的零输入响应
电容
电感
5.2 一阶电路的零状态响应
电容上的初始电压为零
电感
5.3 一阶电路的全响应(零输入 零状态)
电容上的初始电压u0_,并且有输入的独立电压源
5.4 一阶电路分析的三要素法(稳态值 初始值 时间常数)
三要素公式
例题
6. 二阶电路
6.1 二阶电路的零输入响应
6.2 电容电压为变量时的初始条件
6.3 二阶电路的零状态响应(过阻尼 临界阻尼 欠阻尼)
过阻尼
欠阻尼
临界阻尼
6.4 二阶电路零状态响应和全响应
六:相量法(后面都要用这个方法)
1.为什么需要引入相量法?
交流电路在输变电、信号处理等领域应用极为广泛!当激励为正弦量,例如us = 100coswt 且电路中含有动态元件时,通常关注电路的稳态解,较少关注电路的暂态解(过渡过程) 为什么用向量法? 若要求在正弦激励下含动态元件线性电路的稳态解,首先需要列写电路的微分方程 有没有一种方法,可不列写微分方程,也不需进行复杂的待定系数求解?这种方法就是相量法! ! ! 什么是向量法? 相量法是利用正弦量和复数的关系,将微分方程变成代数方程 从而将求微分方程的特解转变为求代数方程的解
2.复数
2.1 复数的表示形式
2.2 复数运算(加减乘除 旋转因子)
3.正弦量(幅值I 角频率 初相位)
①测量中,交流测量仪表指示的电压、电流读数一般为有效值 ②区分电压、电流的瞬时值、最大值、有效值的符号 i—电流瞬时值 u Im—电流最大值 Um I—电流有效值 U
4.相量法的引入(正炫量——>复数的实部)
举例
5.电路定律的相量形式(电流 电压 电阻 电感 电容)
电流的相量形式满足KCL方程:电流向量 电压的相量形式满足KVL方程:电压向量 VCR:每条支路的电压电流关系方程
电阻
电感(感抗):类似有区别
电容(容抗):类似有区别
6.阻抗和导纳
6.1 阻抗Z(电抗_感性 容性)
类似于电阻
6.2 导纳Y
类似于电导G
七:正弦稳态电路的分析
1.相量图
引入 复数:可以用复平面上的一个向量(带箭头方向的线段)来表示。这就将代数与几何联系起来 相量是复数:所以可以在复平面几何表示,所绘制的图形称为相量图 依据:KCL KVL封闭图形 确定相量的角度需要两个步骤: 第1步:确定参考相量,即角度为零的相量 串联电路选电流作为参考相量 并联电路选电压作为参考相量 第2步:根据支路的VCR确定支路电压或电流相量的角度 滞后:顺时针,后面 超前:逆时针,前面
例题
2.正弦稳态电路的功率(瞬时ρ 有功p 无功Q 视在S)
2.1 瞬时功率
2.2 有功功率和无功功率
2.3 视在功率和功率因数
2.4 复功率
3.最大功率传输
八:含有耦合电感的电路[注意别听迷糊了]
耦合电感的作用是:利用两线圈间的磁耦合作用,可进行能量传输或信号传输
耦合电感是电感元件也称为自感元件 如果两个或两个以上的线圈中每个线圈所产生的磁通都与另一个线圈相交链,则称这些线圈有磁耦合或者说具有互感 若假定这些线圈是静止的,并且忽略了线圈中的电阻和匝间的分布电容,具有磁耦合的诸线圈就可表示为理想化的耦合电感元件
1.互感的定义
自感是自我的感应,互感是相互的感应,是电感之间的合作 作用 互感最典型的应用是变压器,通过互感实现变压 互感还有电隔离和阻抗变换器的作用
2.同名端和互感电压方向
同名端:如果两个端子流入电流会使得产生的磁场相互增强,那么这两端子就称为同名端
3.互感的去耦等效(串联 并联 T型)
互感串联
同向和反向
互感并联:只是T型接法的一种特殊情况
T型接法
4.含有耦合电感电路的计算
在正弦稳态情况下,含有耦合电感电路的计算仍应用前面介绍的相量分析方法 注意互感线圈上的电压除自感电压外,还应包含互感电压 一般采用支路法和回路法计算 如果已经用去耦等效法,获得无耦合电感的电路,直接用相量法的任何方法
5.空心变压器
6.理想变压器
九:电路的频率响应
1.网络函数定义和特性
2.谐振定义和谐振条件
3.RLC串联谐振
3.1 特点
3.2 频率响应
例题
4.RLC并联谐振
十:三相电路
1.三相电路
2.线电压(电流)与相电压(电流)的关系
电压
电流
3.对称三相电路的计算
化为单相路的方法
4.不对称三相电路的概念
不对称三相电路 电源不对称(不对称程度小,系统保证其对称) 电路参数(负载)不对称 讨论对象 电源对称,负载不对称的三相电路 分析方法:复杂正弦稳态电路的分析方法 主要了解:中性点位移
5.三相电路的功率
5.1 对称三相电路功率的计算(平均功率 无功功率 视在功率 瞬时功率)
平均功率
无功功率 视在功率
瞬时功率
5.2 三相功率的测量(三表法 二表法)
十一:非正弦周期电流电路、二端口网络
1.非正弦周期信号
2.非正弦周期电流电路的有效值和平均功率
3.非正弦周期电流电路的计算
例题
4.二端口网络
4.1 定义
4.2 二端口的方程和参数
先列写电压电流方程,再整理方程为所求参数对应的方程