自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

人工智能AI技术

专注于人工智能AI技术的研发和教育

  • 博客(477)
  • 收藏
  • 关注

原创 人工智能教程 - 前言

很多人都想学人工智能,它比黑客技术更加神秘更加吸引人。但是很多人都不敢学,因为传统教材的门槛都很高——需要编程,高数,统计学等等知识。所以我才编写了这一系列教程,使它通俗易懂,接地气,无需高数,只要你上过高中,就可以学!而且,传统教材都很枯燥,即使作者花时间写得很易懂但依然很少人能坚持学下去,因为太枯燥了。所以我主张快乐学习,尽量加入搞笑的成分在教程里面,其实我生活中就很乐观幽默,歌手李健就是我性格的一个写照吧,只不过我能说荤段子他不能。金杯银杯不如口碑,读者的留言让我的努力得到了认可!

2020-07-28 10:33:50 1034667 76

原创 【C#程序员入门AI】环境一键搭建:.NET 8+AI开发环境(Semantic Kernel/ML.NET/ONNX Runtime)配置

2026年C# AI环境搭建,真的很简单!.NET 8:地基,10分钟装好Semantic Kernel:LLM调度,1行命令安装ML.NET:传统ML,原生支持,无需PythonONNX Runtime:本地模型,一键运行Ollama:本地大模型,隐私友好,免费好用跟着这篇文章,复制粘贴命令,10分钟搞定全套环境,直接进入AI开发实战!

2026-01-22 22:50:45 523

原创 【Agent从入门到实践】24 向量数据库的通俗理解:什么是向量,什么是相似度检索

各位小伙伴,上一节咱们知道了:Agent要想“懂语义、找相似、查得快”,必须靠向量数据库。但很多人一听“向量”“嵌入”“余弦相似度”,头就大了——这不是数学吗?我一个程序员,搞懂这些有啥用?其实完全不用怕!今天咱们就用大白话+生活类比,把“向量”“向量嵌入”“相似度检索”讲得明明白白,不用复杂公式,不用高等数学,看完你就能懂:向量数据库到底在干嘛,为什么它能解决传统数据库搞不定的事。咱们先抛开数学定义,用奶茶来举例子:甜度:0(无糖)~ 10(全糖)清爽度:0(浓郁)~ 10(清爽)奶味。

2026-01-22 16:58:33 474

原创 【Agent从入门到实践】23 为什么Agent需要向量数据库?解决传统数据库的检索痛点

用户问“夏天喝什么奶茶清爽不腻”,传统数据库搜“夏天”“清爽”,结果全是“夏天限定”“清爽包装”,根本不是口味;想给用户推荐“和他上次点的芋泥鲜奶差不多的”,传统数据库只能按“芋泥”“鲜奶”关键词搜,找不到“口感相似”的;知识库有10万条FAQ,用户问“怎么取消订单”,传统数据库要遍历全文,慢到用户都等不及。这些问题,本质上都是传统数据库的“检索痛点”——它只认“关键词”,不懂“语义”;只擅长“精确匹配”,做不了“相似查找”;处理海量非结构化数据(文本、语音、图片)时,又慢又不准。而向量数据库。

2026-01-22 16:31:38 218

原创 FLUX.2[klein]开源!小香蕉平替,本地部署AI绘画的极简方案

哈喽各位AI绘画爱好者、技术党们!今天给大家带来一个炸裂消息——FLUX.2[klein]正式开源!堪称“小香蕉”的完美平替,速度更快、显存占用更低,消费级显卡就能本地跑,新手也能10分钟搞定部署,话不多说,直接开干!FLUX.2[klein]的开源,彻底降低了AI绘画的本地部署门槛,8G显存就能实现亚秒级生成,还支持图像编辑,无论是个人创作还是小型商用,都非常实用。赶紧动手试试吧!有任何部署问题,欢迎在评论区留言,一起交流进步~

2026-01-22 15:06:10 446

原创 一文彻底搞懂Transformer

用自注意力机制,让每个元素都能“看到”全局,解决长距离依赖问题;用多头注意力,从多个角度解析信息,让理解更全面;用位置编码和并行计算,解决顺序问题和效率问题。不管是千亿参数的GPT-4,还是手机里的AI相册分类,本质上都是这个逻辑的延伸。掌握了Transformer,就相当于掌握了现代AI的“内功心法”。

2026-01-22 12:36:34 344

原创 【C#程序员入门AI】2026年必知的AI生态与技术路线图

2026年,C#程序员入门AI,天时(TIOBE年度语言)、地利(微软全栈支持)、人和(生态成熟)都占了。先搭环境跑demo → 搞定LLM+RAG → 学ML.NET → 进阶Agent+工程化 → 落地行业场景。不用怕,跟着这个路线走,就能从“AI小白”变成“C# AI开发能手”,下一篇我们就从环境搭建+第一个AI程序开始,手把手带大家跑起来!

2026-01-21 23:53:14 880

原创 【Agent从入门到实践】22 LLM的局限性:Agent开发中需要规避的坑

各位小伙伴,前面咱们把LLM当Agent的“大脑”,玩得风生水起——调用API、写Prompt、驱动Agent干活,感觉LLM无所不能?但实际开发中你会发现:LLM不是“完美大脑”,它有不少天生的“短板”——比如会编假数据(幻觉)、记不住长对话(上下文丢失)、复杂逻辑算错(数学/推理漏洞)。这些局限性如果不规避,Agent很可能出大问题:推荐不存在的奶茶、算错库存补货量、把用户地址搞混……

2026-01-21 22:37:59 843

原创 【Agent从入门到实践】21 Prompt工程基础:为Agent设计“思考指令”,简单有效即可

各位小伙伴,上一节咱们搞定了LLM的API调用——现在能让“大脑”说话了,但新问题来了:同样调用GPT-4o,为什么有的时候Agent听话又高效,有的时候却答非所问、漏洞百出?关键就在于“Prompt(提示词)”——它相当于给Agent的“思考指令”,直接决定了LLM大脑的思考方向和输出质量。就像给别人派活,你说得越清楚,对方做得越到位;指令模糊,结果自然一言难尽。

2026-01-21 18:39:23 275

原创 【Agent从入门到实践】20 LLM的基础使用:API调用(OpenAI、国产大模型),程序员快速上手

其实不管是OpenAI还是国产大模型,API调用的核心逻辑都是“统一的请求格式 + 对应的SDK调用 + 响应解析请求格式统一:都是通过messages参数传递“系统指令+用户输入”,通过max_tokens等参数控制输出;SDK用法类似:都需要初始化客户端(传入密钥),调用或类似方法;响应解析简单:都能从(或类似字段)中提取生成的文本。对咱们Agent开发来说,LLM API调用是“大脑”的基础——只有先学会调用LLM,才能让Agent具备“理解、推理、决策”的能力。

2026-01-21 17:22:22 609

原创 【Agent从入门到实践】19 LLM是Agent的“大脑”:通俗理解LLM如何支撑Agent的决策

各位小伙伴,前面咱们把 Agent 的“手脚”(执行、脚本化)、“眼睛耳朵”(感知、API)、“记忆本”(数据处理、CSV/JSON)都讲得差不多了。Agent 到底是怎么“想”的?用户说“帮我点杯奶茶,要清爽点的”,Agent 怎么知道该推荐“青提茉莉少冰”而不是“全糖珍珠”?库存不够了,Agent 怎么判断是“先暂停接单”还是“先自动补货”?多个任务同时来,Agent 怎么排优先级:先处理紧急订单,还是先生成周报?LLM(大语言模型)就是 Agent 的“大脑”。

2026-01-21 16:34:44 435

原创 【Agent从入门到实践】18 脚本化编程:批量执行、自动化逻辑

各位AI入门的小伙伴们,前面咱们搞定了Agent的“信息交互”(HTTP/API)和“信息处理”(JSON/CSV解析),现在Agent已经能“看懂”外部数据、“听懂”用户需求了!但还有个关键能力没解锁——Agent怎么“自动干活”?每天早上8点自动查天气,给用户发穿衣提醒;批量处理100个Excel文件,提取关键数据生成报告;当库存低于阈值时,自动给供应商发补货通知;每隔1小时检查订单状态,给用户推送物流更新。这些“重复、有规律、需要定时/批量执行”的任务,正是脚本化编程。

2026-01-21 15:32:47 688

原创 MiniMax模型部署实战:低成本私有化,月活破亿的AI助手技术拆解

MiniMax这套方案,300元起步就能部署私有化AI助手,效果对标GPT-4,还能扛住月活破亿的流量,不管是做客服、代码助手、智能体,还是多模态应用,都能直接落地!2026年AI行业的核心就是低成本、私有化、高可用,MiniMax完美踩中了这些点,月活破亿的AI助手已经验证了这套方案的可行性,咱们中小团队也能跟着吃肉!

2026-01-21 12:28:04 460

原创 【Agent从入门到实践】17 数据处理基础:JSON/CSV解析、简单数据结构,处理Agent的输入输出

各位AI入门的小伙伴们,前面咱们搞定了Agent与外部交互的“通用语言”——HTTP/API。但新问题来了:外部系统返回的数据(比如天气API的JSON、订单系统的CSV),Agent怎么“看懂”并使用?Agent自己的输入输出(比如用户需求、决策结果),又该怎么“整理”得规范有序?数据处理基础——JSON/CSV解析(Agent最常用的两种数据格式)+ 简单数据结构(列表/字典/数据框)。这是Agent“消化信息”和“输出结果”的关键,就像咱们吃饭要先嚼碎、说话要条理清晰一样。

2026-01-21 00:18:26 491

原创 【Agent从入门到实践】16 接口与网络:API调用、HTTP请求,Agent与外部交互的基础

各位小伙伴,前面咱们把 Agent 的“感知、决策、执行、记忆、工具调用、协作”都讲了个遍,也知道了 Python 是开发 Agent 的首选语言。但有个最底层、最关键的东西还没系统聊——Agent 怎么跟外面的世界“说话”?Agent 发一个请求 → 外部系统回一个响应。API 调用 + HTTP 请求——Agent 与外部交互的“通用语言”。全程大白话 + 最新 Python 实践(requests / httpx / aiohttp),不讲玄学,只讲你写 Agent 真正用得上的东西。

2026-01-20 23:20:37 1366

原创 【Agent从入门到实践】15 编程语言基础

各位AI入门的小伙伴们,前面咱们把Agent的六大核心模块(感知、决策、执行、记忆、工具调用、协作)都讲完了——现在你已经清楚Agent是“怎么干活”的了!但要动手开发Agent,第一步得选对编程语言~市面上编程语言那么多:Java、C++、JavaScript、Go、Python……为什么咱们一直用Python做示例?为什么Python会成为Agent开发的“首选语言”?

2026-01-20 17:35:50 592

原创 【Agent从入门到实践】14 协作模块:多Agent如何“分工配合”

各位程序员小伙伴,咱们AI Agent系列终于讲到“团队协作”了!前面咱们搞定了单个Agent的“大脑”(决策)、“记忆”(存储)、“手脚”(工具调用),但实际工作中很多任务不是单个Agent能搞定的——比如让Agent完成“市场调研报告”,可能需要一个Agent查数据、一个Agent分析数据、一个Agent写报告,这就需要多Agent协作。

2026-01-20 15:40:11 534

原创 【Agent从入门到实践】13 工具调用模块:如何调用工具

各位程序员小伙伴,咱们AI Agent入门系列又更新啦!上一节搞定了Agent的“记忆系统”,今天来解锁它的“超能力”——工具调用模块。你想想,咱们写代码时会调用各种API、读写文件、用现成的框架模型,Agent也一样!光有决策和记忆还不够,能“动手做事”才是关键。这一节咱们就用大白话讲清Agent工具调用的原理,还会手把手教你用C#实现三大常见场景:调用第三方API、操作本地文件、调用其他AI模型,看完直接复制代码就能跑通!// 工具调用的请求参数模型。

2026-01-20 12:32:59 512

原创 【Agent从入门到实践】12 记忆模块:Agent如何“记住信息”

各位程序员小伙伴,咱们继续AI Agent的入门之旅!上一节聊完了Agent的“大脑”(决策模块),今天来扒一扒它的“记事本”——记忆模块。你想啊,咱们写代码的时候,会临时记个变量名、接口参数(短期记忆),也会把常用的工具类、框架用法存在脑子里(长期记忆)。AI Agent也一样,要想不“失忆”,就得有靠谱的记忆系统。这一节咱们就用大白话讲清短期记忆和长期记忆的区别,还会给大家上ML.NET的实操代码,看完就能动手实现!// 记忆项模型:存储记忆的内容和时间戳// 记忆内容set;// 创建时间。

2026-01-20 12:01:42 950

原创 能用C#开发AI吗?

很多C#开发者觉得AI离自己很远,其实完全不是!AI行业现在缺的不是Python开发者,而是能把AI落地到实际项目里的开发者。C#凭借在企业级、工业级、跨平台部署上的优势,在AI落地领域有着不可替代的地位,而且相关岗位的薪资也很高。目前国内还是很缺AI人才的,希望更多人能真正加入到AI行业,共同促进行业进步。想要系统学习AI知识的朋友可以看看我的教程 http://captainbed.cn/gzh,教程通俗易懂,风趣幽默,从深度学习基础原理到各领域实战应用都有讲解。

2026-01-20 09:22:27 566

原创 【Agent从入门到实践】11 执行模块:Agent如何“完成动作”

各位AI入门的小伙伴们,上一节咱们搞定了决策模块——Agent知道“该做什么”了对吧?就像咱们决定好“去A店买奶茶”,接下来是不是得起身、走路、下单、拿奶茶?这就是执行模块的活儿!今天咱们就聊聊Agent的“手脚”——执行模块到底是怎么把“决策”变成“实际动作”的?还是老规矩,大白话+代码实战,全程不搞复杂概念,看完你就懂Agent是怎么和外部世界互动的~“翻译+执行+反馈”。翻译:把决策指令翻译成具体的、可执行的动作;执行:调用外部系统,把动作落地;反馈:接收外部结果,纠错或确认完成。

2026-01-19 22:58:07 1448

原创 【Agent从入门到实践】10 决策模块:Agent如何“思考问题”

各位小伙伴,上一节我们聊了感知模块,Agent能“看到”周围的信息了对吧?但光看不行啊,就像咱们看到美食,得想“吃不吃、怎么吃”;看到路口,得想“往左走还是往右走”——这就是决策模块要干的活儿!今天咱们就扒一扒Agent的“大脑核心”:决策模块到底是怎么帮Agent“思考问题”的?全程大白话,不搞复杂公式,还会带大家写个简单的决策代码,看完你就懂啦~这种Agent最厉害——它没有固定的规则,而是通过“学习”慢慢总结经验,越用越聪明!

2026-01-19 22:24:03 834

原创 【Agent从入门到实践】09 感知模块:Agent如何“获取信息”

各位程序员朋友,咱们正式进入第三部分——Agent核心模块拆解!咱们要深入Agent的“内部结构”,把每个核心模块的工作原理、技术实现思路讲清楚。毕竟,想开发出自己的Agent,只知道框架和应用场景还不够,得明白它的“五脏六腑”是怎么协同工作的。感知模块。咱们前面讲Agent发展脉络时提到,V1.0的简单反应式智能体就有“感知”能力——其实感知模块就是Agent的“眼睛和耳朵”,负责从各种渠道获取信息,然后把这些信息传递给后面的记忆模块、决策模块,是Agent工作的“第一步”。

2026-01-19 12:06:48 791

原创 10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解

最近迪士尼和OpenAI的10亿美元合作炸翻了科技圈和文娱圈!一边是全球IP天花板,一边是AIGC技术巨头,这波强强联合直接给行业指了条明路——正版IP+AIGC技术=超级应用。不管你是程序员、创业者,还是想入局AI的新手,这波风口都千万别错过!今天就用最接地气的方式,拆解他们的合作逻辑、核心技术,再给大家一套能直接落地的开发方案,连代码和流程图都给你备好,看完就能动手干!

2026-01-19 11:41:20 817

原创 用LangChain开发“代码生成与优化Agent”

各位程序员朋友,前面咱们把Agent的核心模块拆解得明明白白,还学了每个模块的进阶技巧——现在终于到了最激动人心的实战环节!这一节咱们不玩虚的,手把手教你用LangChain+向量数据库(Chroma)+大模型开发一个完整的“代码生成与优化Agent”。这个Agent能实现两大核心功能:一是“输入自然语言需求,自动生成符合你项目风格的代码”;二是“输入现有代码,自动优化性能、修复bug、规范格式”。

2026-01-18 23:39:55 878

原创 Agent核心模块进阶:让每个组件更智能、更实用

上一节咱们拆解了Agent的四大核心模块——感知、记忆、决策、工具调用,知道了每个模块的基本工作原理和简单实现。但实际开发中,简单版本的模块肯定满足不了复杂需求:比如感知模块收集的信息不全、记忆模块检索太慢、决策模块拆的步骤不合理、工具调用经常失败……这一节咱们就来聊每个模块的“进阶技巧”,不用讲复杂的算法原理,全是能直接落地的实战方法,帮你把每个模块从“能用”升级到“好用、智能”,让你的Agent真正具备解决复杂问题的能力。感知模块:从“被动收集”到“主动探索+跨源融合”,解决“信息不全”的问题;

2026-01-18 23:07:23 957

原创 AI入门必备Python知识之硬核工具

库名核心数据结构AI中的核心用途必学操作NumPyndarray(数组)特征矩阵存储、批量运算、矩阵乘法创建数组、索引切片、均值/最大值、矩阵乘法PandasDataFrame(表格)数据集读写、缺失值处理、特征筛选读取CSV、查看数据信息、dropna/fillna、特征标签分离对于有编程基础的你来说,NumPy和Pandas的核心用法并不复杂——重点是理解数组/表格的思维,以及批量处理的优势。

2026-01-18 12:32:55 945

原创 AI入门必备Python知识之函数

不管是哪种编程语言,函数的核心都是“输入参数→处理逻辑→返回结果”。Python中定义函数用def。

2026-01-18 12:30:07 758

原创 AI入门必备Python知识之存储容器

和Java的ArrayList、HashMap,C++的vector、map相比,Python的容器语法更简洁、操作更方便,咱们不用死记所有方法,只抓AI场景中最常用的核心功能,分分钟就能用它们处理AI数据~。列表就像一个“可修改的有序容器”,AI中用来存储批量样本、特征值、损失值等,比如存储100个样本的特征、50轮训练的损失数据,用法和其他语言的数组/ArrayList类似,但更灵活:;这一节咱们学的列表、元组、字典、集合,是AI开发中处理数据的核心工具,各自的核心用途可以总结为:;

2026-01-18 12:25:56 810

原创 AI入门必备Python知识之流程控制:AI训练的核心逻辑骨架

对于有其他编程语言基础的你来说,这部分就是“换汤不换药”——逻辑和Java、C++完全一致,只是Python的语法更简洁,不用写多余的大括号,咱们直接聚焦AI场景的实战用法,让你快速就能上手写AI训练的核心逻辑~咱们学的if-elif-else和for/while循环,看似简单,却是AI开发的核心——不管是训练模型、处理数据,还是调试代码,都离不开这些逻辑。(4个空格或1个Tab)来区分代码块——这是Python的“特色”,也是AI代码中保持整洁的关键,缩进错了会直接报错,记得统一风格~

2026-01-18 12:18:37 856

原创 AI入门必备Python知识之基础语法

咱们只学了“变量、4种核心数据类型、基本运算”,但这些已经是AI开发中最常用的Python基础——后续学NumPy数组运算、Pandas数据处理、AI模型训练,都离不开这些知识点。如果想快速巩固,建议把上面的代码复制到Python环境中跑一遍,修改参数(比如把learning_rate改成0.01,看看权重变化),5分钟就能完全掌握~如果你已经会Java、C++、JavaScript这些语言,那Python入门简直是“降维打击”——它语法简洁、不用纠结指针、不用写多余的括号,重点是。

2026-01-18 12:11:55 359

原创 Agent的核心模块拆解:从“黑盒”到“白盒”

用户目标 → 感知模块(收集+预处理信息) → 记忆模块(存储+检索相关记忆) → 决策模块(拆分步骤+选择策略) → 工具调用模块(执行策略+返回结果) → 结果反馈给用户和记忆模块 → 循环直到达成目标感知模块:保证“信息全”;记忆模块:保证“不健忘”;决策模块:保证“方向对”;工具调用模块:保证“能落地”。

2026-01-17 17:28:26 811 1

原创 【Agent从入门到实践】08 主流Agent框架与平台:不用从零造轮子,快速上手开发

初始化两个Agent:需求分析Agent和代码生成Agentllm = ChatOpenAI(model_name="gpt-3.5-turbo", api_key="你的密钥")requirements_agent = llm.bind(system="你是需求分析专家,把自然语言需求拆成技术功能点")code_agent = llm.bind(system="你是Python开发专家,根据技术功能点生成代码")# 定义流程:需求输入→需求分析→代码生成。

2026-01-17 17:01:51 1031

原创 【Agent从入门到实践】07 程序员最值得关注的Agent应用领域

聊完4个核心领域,可能有朋友会问:“我是做前端的,该选哪个方向?”“我是做算法的,能在Agent领域做什么?程序员类型优先关注的应用领域核心落地方向后端工程师研发提效、自动化运维、业务系统代码生成Agent、运维监控Agent、智能工单Agent前端工程师研发提效、业务系统组件生成Agent、前端可视化Agent、用户交互Agent算法工程师研发提效、数据处理、业务系统代码优化Agent、数据分层Agent、客户运营Agent运维工程师自动化运维。

2026-01-17 16:29:08 718

原创 【Agent从入门到实践】06 Agent的发展脉络:从简单智能体到多智能体协作

版本核心能力像什么程序员视角的核心逻辑V1.0 简单反应式感知+固定执行自动开关输入→固定输出V2.0 基于模型感知+短期记忆+规则执行有状态的执行者输入+历史状态→输出V3.0 目标驱动感知+记忆+自主决策+目标达成解决问题专家目标→拆分步骤→执行→调整→达成目标V4.0 多智能体协作多个V3.0 Agent+分工协作专业团队大目标→拆分小目标→多Agent协作→达成大目标。

2026-01-17 15:41:03 1008

原创 【Agent从入门到实践】05 小结:理清Agent的核心定义与核心能力

Agent是“目标驱动、能自主决策、感知环境、持续交互”的智能程序,你告诉它“做什么”,它自己想“怎么做”。对比传统程序,这句话的关键在于“自主”——传统程序是你告诉它“怎么做”,它才“做什么”;而Agent是你只需要定目标,它自己搞定执行过程。这一点是Agent和传统程序的本质区别,一定要刻在脑子里。

2026-01-17 14:54:11 987

原创 Gemini 3 Flash对接AI Agent,打造高性价比智能体应用

性能够强:博士级推理+顶级编程能力,复杂任务拆解和工具调用不在话下;速度够快:218 tokens/秒输出,实时交互不卡顿;成本够低:价格是竞品的1/4-1/5,小团队也能规模化使用;部署够灵活:支持多平台集成,容易对接现有工具链。现在AI Agent开发的门槛已经被Gemini 3 Flash拉低了,不管是个人开发者做副业,还是企业落地AI应用,这都是目前性价比最高的选择。跟着上面的代码实操一遍,你也能快速搭建自己的智能体应用!

2026-01-17 10:39:25 670

原创 安卓AI智能体开发实战:基于AndroidGen-GLM搭建手机端超级助理,支持离线运行

今天这套基于AndroidGen-GLM的安卓AI智能体开发教程,核心就是"轻量化+离线化",让普通开发者也能在手机端落地AI应用。整个过程不用复杂的AI算法知识,跟着代码一步步复制粘贴就能跑通,还能根据自己的需求二次开发。现在手机AI是风口,不管是做个人工具还是创业项目,都有很大的潜力。比如可以扩展成离线AI办公助手、儿童教育助手、老人陪伴助手等,甚至可以打包上架应用市场赚钱。如果在开发过程中遇到问题(比如模型加载失败、语音交互异常),可以在评论区留言,我会一一回复解答。

2026-01-17 10:37:11 1021

原创 【Agent从入门到实践】04 Agent的技术边界:哪些事Agent能做,哪些暂时做不到

举个例子:你让Agent评价“两个UI设计方案哪个更好”,它可能会从色彩、布局、易用性等方面给出一些客观的分析,但它无法像人类一样,根据用户的审美偏好、产品的定位,给出主观的、有针对性的评价。更重要的是,Agent没有“伦理道德观”,如果让它做一些涉及伦理的决策(比如“是否应该牺牲少数人的利益来拯救多数人”),它无法给出符合人类价值观的答案。:现阶段的Agent主要依赖大语言模型的“统计学习”,它能模仿人类的语言和逻辑,但缺乏真正的“逻辑推理能力”,对于需要严格推导的问题,还力不从心。

2026-01-17 00:07:07 720

原创 【Agent从入门到实践】03 生活中的Agent:用程序员能懂的例子类比

聊完这三个例子,咱们再来总结一下:生活中的Agent,不管是智能客服、运维机器人还是代码助手,它们的核心都是**“目标驱动,自主解决问题”**。智能客服的目标是“解决用户的售后问题”;运维机器人的目标是“保证服务器稳定运行”;代码助手的目标是“帮程序员高效写代码”。它们都不用你写死每一步的逻辑,而是能自己感知信息、自己做决策、自己和外界交互,直到达成目标。这和咱们前面讲的Agent的三大核心特质,完全对应上了。看到这里,你是不是觉得Agent不再抽象了?

2026-01-16 22:52:38 989

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除