目录
- 引言
- 脉冲神经网络(SNNs)与Transformer的背景
- 双模态融合的整体思路与架构设计
- 训练与性能评估
- 硬件适配与扩展应用
一、引言
类脑计算是人工智能领域的重要研究方向,旨在模仿人类大脑的思维与计算模式,突破传统深度学习模型在可解释性、能效和动态处理等方面的瓶颈。脉冲神经网络(Spiking Neural Networks, SNNs)与Transformer架构的结合,已成为当前学术界和工业界广泛关注的热点,尤其是在低功耗、高效能场景下的应用展现了巨大的潜力。这种融合不仅继承了脉冲化神经元模型对时序数据的高效处理优势,还融合了Transformer在全局依赖建模与自注意力机制方面的强大能力,从而开辟了一个全新的计算范式。
本文旨在探讨脉冲神经网络与Transformer架构融合的技术路径,分析其理论基础、架构设计及实际应用,讨论该模型在提升能效、扩展性以及应对复杂时空数据方面的潜力。
二、脉冲神经网络(SNNs)与Transformer的背景
2.1 脉冲神经网络的生物学基础
脉冲神经网络模拟了生物神经元的放电过程,能以时序方式对输入信号进行编码,具有以下突出特征&#x