目录
- 一、基因与蛋白质研究:从AlphaFold到更广阔的生命科学
- 二、材料科学:从试错到AI辅助筛选
- 三、AI驱动的科研新范式
- 四、面临的挑战与应对策略
- 五、示例:基于AI的蛋白质结构预测工作流程
- 六、AlphaFold的安装与使用
- 七、未来展望与平衡点
- 八、结语
人工智能(AI)正以前所未有的速度重塑科学研究,从蛋白质结构预测到新材料发现,再到多领域融合的科研生态,AI的影响力与日俱增。本文主要面向生命科学领域的研究人员以及AI技术应用者,旨在帮助他们了解AlphaFold在科研中的应用及其未来潜力。文章将结合可解释性、数据质量与实验验证等问题,深入探讨AI对基础科研范式的重构,并通过具体示例展示实际工作流程,让读者更直观地了解AI在科研中的应用实践。
一、基因与蛋白质研究:从AlphaFold到更广阔的生命科学
1. AlphaFold的里程碑意义
AlphaFold由DeepMind研发,最初版本在预测蛋白质结构方面取得突破,随后进一步迭代升级,展示了AI在生命科学中的巨大潜力。官方发布的里程碑是AlphaFold2,而未来的潜在升级版本(本文