AI 高手之路 #4:Python 编程基础——AI 开发的“瑞士军刀”

目录

  1. 引言:为什么 Python 是 AI 开发的首选语言?
  2. Python 安装与环境配置
    • 2.1 下载和安装 Python
    • 2.2 选择 IDE 或代码编辑器
    • 2.3 使用虚拟环境 (virtualenv 或 conda)
  3. Python 基础语法
    • 3.1 变量和数据类型
      • 数值类型 (int, float)
      • 字符串 (str)
      • 布尔值 (bool)
      • 列表 (list)
      • 元组 (tuple)
      • 字典 (dict)
      • 集合 (set)
    • 3.2 运算符
      • 算术运算符
      • 比较运算符
      • 逻辑运算符
      • 赋值运算符
      • 成员运算符 (in, not in)
      • 身份运算符 (is, is not)
    • 3.3 控制流
      • 条件语句 (if-elif-else)
      • 循环语句 (for, while)
      • break 和 continue
    • 3.4 函数
      • 定义函数 (def)
      • 参数传递(位置参数、关键字参数、默认参数、可变参数)
      • 返回值 (return)
      • 匿名函数 (lambda)
      • 作用域 (global, nonlocal)
    • 3.5 面向对象编程 (OOP)
      • 类 (class) 和对象 (object)
      • 属性 (attribute) 和方法 (method)
      • 继承 (inheritance)
      • 多态 (polymorphism)
      • 封装 (encapsulation)
  4. Python 常用库简介
    • 4.1 NumPy:科学计算
    • 4.2 Pandas:数据分析
    • 4.3 Matplotlib:数据可视化
    • 4.4 Scikit-learn:机器学习
    • 4.5 TensorFlow/Keras:深度学习
    • 4.6 其他常用库:os, sys, argparse, requests, json, datetime
  5. Python 在 AI 中的应用
  6. 总结与下一步
  7. 挑战任务

在这里插入图片描述

大家好!欢迎来到“AI 高手之路”系列的第四篇。在前几篇文章中,我们一起畅想了人工智能的未来,探讨了AI工程师的必备技能。今天,我们将正式开始行动,学习AI开发最重要的基石——Python编程语言

在人工智能的浩瀚星空中,编程语言繁星点点,为何唯独Python如此耀眼,成为AI领域的“弄潮儿”? 让我们一起揭开Python的神秘面纱。

1. 引言:为什么 Python 是 AI 开发的首选语言?

在AI浪潮席卷全球的今天,Python几乎已成为事实上的行业标准。无论是前沿的机器学习研究,还是火热的深度学习应用,亦或是炙手可热的数据科学领域,Python都占据着举足轻重的地位。

是什么让Python在众多编程语言中脱颖而出,成为AI开发的首选?答案并非只有一个,而是Python自身独特优势与AI发展需求的完美契合:

  • 大道至简,易学易用: Python的语法设计哲学是“优雅”、“明确”、“简单”。它摒弃了繁琐的语法规则,更接近自然语言,使得代码易于阅读和编写。即使是编程新手,也能快速入门,将精力集中在解决AI问题本身,而非语言的复杂性。

  • 库的海洋,生态繁荣: 如果说Python是AI开发的利剑,那么其背后庞大而活跃的开源社区,以及由此孕育而生的海量库(Libraries)就是这把利剑最锋利的刃。NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, PyTorch… 这些耳熟能详的名字,构成了Python在科学计算、数据分析、机器学习和深度学习领域的强大生态系统。 几乎你能想到的任何AI任务,都能在Python的库中找到相应的工具,极大地降低了开发门槛,加速了创新进程。

  • 跨平台兼容,随处可用: “一次编写,到处运行” (Write once, run anywhere) 是Java的口号,但Python在跨平台性方面也毫不逊色。 无论你使用的是Windows、macOS还是Linux,Python都能完美运行,保证了开发环境的一致性和代码的可移植性,让开发者可以专注于算法和模型,而无需为平台差异而烦恼。

  • “胶水语言”,无缝集成: AI应用的性能至关重要,而Python本身并非以性能见长。 但Python的强大之处在于其优秀的“胶水”特性。 它可以轻松地与其他高性能语言(如C/C++、Fortran)编写的模块集成,在保证开发效率的同时,又能充分利用底层语言的性能优势。 许多Python的AI库底层都是用C/C++编写,例如NumPy和TensorFlow,这使得Python能够兼顾开发效率和运行效率。

  • 应用广泛,前景无限: Python的应用场景早已超越了AI领域,在Web开发、自动化脚本、系统运维、游戏开发等领域都有着广泛的应用。 掌握Python,不仅能让你在AI领域游刃有余,更能为你的职业发展打开更广阔的大门。 AI技术的蓬勃发展,也意味着对Python人才的需求将持续增长,选择Python,就是选择了拥抱未来。

总而言之,Python之所以成为AI开发的首选语言,是多种因素共同作用的结果。它易学、强大、灵活、通用,正如一条平坦而宽阔的丝绸之路,引领着无数开发者走向人工智能的殿堂。

2. Python 安装与环境配置

工欲善其事,必先利其器。 在开始Python编程之旅前,我们需要先搭建好Python开发环境。

2.1 下载和安装 Python

首先,我们需要从Python官网下载并安装Python解释器。

  • 官方网站: https://www.python.org/downloads/

  • 推荐版本: 强烈推荐Python 3.7 或更高版本。Python 2.x 版本已停止维护,新的AI库和框架都主要支持Python 3.x。

  • 安装过程:

    • Windows: 下载Windows安装程序 (通常是 .exe 文件),运行安装程序。 务必勾选 “Add Python to PATH”, 这样可以将Python添加到系统环境变量中,方便在命令行中直接使用Python命令。

    • macOS: macOS通常预装了Python,但版本可能较低。 建议下载macOS安装程序 (通常是 .pkg 文件) 从官网安装最新版本。 按照提示操作即可。

    • Linux: 大多数Linux发行版都预装了Python。 你可以使用包管理器安装或更新Python。 例如,在Ubuntu或Debian系统中,可以使用以下命令安装Python 3:

      sudo apt-get update
      sudo apt-get install python3
      

安装完成后,打开终端或命令提示符,输入 python3 --version (或 python --version,取决于你的系统配置) ,如果能正确显示Python版本号,则说明安装成功。

2.2 选择 IDE 或代码编辑器

有了Python解释器,我们还需要一个趁手的工具来编写和运行Python代码。 这就是IDE (集成开发环境) 或代码编辑器。

  • IDE (集成开发环境): IDE集成了代码编辑、编译/解释、调试、运行等功能,提供了更全面的开发体验,适合大型项目和专业开发者。

    • PyCharm: JetBrains出品,功能强大,智能代码补全、强大的调试功能、丰富的插件生态,是Python开发的利器。 社区版免费,专业版功能更强大,但需要付费。

    • Spyder: 专门为科学计算和数据分析设计的IDE,界面风格类似于MATLAB,集成了变量管理器、IPython控制台等科学计算常用的工具,非常适合数据科学家和研究人员。

    • Jupyter Notebook/Lab: 以Web形式运行的交互式编程环境,以“笔记本”的形式组织代码、文本、图片、公式等,非常适合数据分析、可视化、教学演示和快速原型开发。 特别适合AI初学者。

  • 代码编辑器: 代码编辑器相对轻量级,专注于代码编辑功能,通常通过插件扩展功能,更加灵活自由,适合喜欢自定义和轻量级工具的开发者。

    • VS Code (Visual Studio Code): 微软出品,免费开源,轻量级但功能强大,通过丰富的插件可以支持各种编程语言,包括Python。 Python插件提供了代码补全、代码检查、调试等功能,体验优秀。

    • Sublime Text: 轻量级、快速、简洁,界面美观,启动速度快,插件生态丰富,但某些高级功能可能需要付费。

    • Atom: GitHub出品,免费开源,可高度定制,界面美观,插件丰富,但启动速度相对较慢。

对于AI初学者,我个人强烈推荐使用Jupyter Notebook。 它交互式的特性,可以让你一边编写代码,一边查看结果,非常适合学习和实验。 如果你喜欢更专业的IDE,PyCharm也是不错的选择。 VS Code则是一个通用的优秀代码编辑器,值得尝试。

2.3 使用虚拟环境 (virtualenv 或 conda)

随着你Python项目越来越多,你可能会遇到不同项目依赖不同版本库的情况。 为了避免项目之间的依赖冲突,保持项目环境的 чистота (纯洁性), 强烈建议使用虚拟环境

  • 为什么要使用虚拟环境?

    • 隔离项目依赖: 不同的项目可能需要不同版本的库。 例如,项目A可能需要TensorFlow 1.x,而项目B可能需要TensorFlow 2.x。 如果不使用虚拟环境,全局环境中只能安装一个版本的TensorFlow,会导致项目冲突。 虚拟环境可以为每个项目创建独立的Python环境,每个环境可以安装不同版本的库,互不干扰。

    • 方便项目管理: 虚拟环境可以轻松创建、激活、删除。 当你不再需要某个项目时,可以直接删除其虚拟环境,而不会影响其他项目或全局环境。 这使得项目管理更加清晰和方便。

  • virtualenv: virtualenv是一个轻量级的虚拟环境管理工具,是Python官方推荐的虚拟环境解决方案。

    已安装
    未安装
    激活
    开始
    安装 virtualenv
    创建虚拟环境
    pip install virtualenv
    激活虚拟环境
    在虚拟环境中工作
    退出虚拟环境
    结束
    # 安装 virtualenv (如果尚未安装)
    pip install virtualenv
    
    # 创建虚拟环境,例如创建一个名为 "venv" 的虚拟环境
    virtualenv venv
    
    # 激活虚拟环境
    # Windows
    venv\Scripts\activate
    # macOS/Linux
    source venv/bin/activate
    
    # 退出虚拟环境
    deactivate
    

    代码解释:

    • pip install virtualenv: 使用pip包管理器安装virtualenv工具。 pip 是Python的包管理器,用于安装和管理Python库。

    • virtualenv venv: 创建一个名为 “venv” 的虚拟环境。 venv 是虚拟环境的目录名,你可以自定义。 执行此命令后,会在当前目录下创建一个名为 “venv” 的文件夹,里面包含了独立的Python解释器和pip。

    • venv\Scripts\activate (Windows) / source venv/bin/activate (macOS/Linux): 激活虚拟环境。 激活后,你的终端或命令提示符会显示虚拟环境的名称 (例如 (venv) )。 此时,你使用 pythonpip 命令,都是在虚拟环境中的Python解释器和pip,与全局环境隔离。

    • deactivate: 退出虚拟环境,回到全局Python环境。

  • conda: conda 是一个更强大的包管理和环境管理工具,不仅可以管理Python包,还可以管理其他语言的包 (如R, C++)。 conda 虚拟环境功能也很强大,并且在数据科学和AI领域应用广泛。 Anaconda 和 Miniconda 都包含了conda。

    # 安装 Anaconda 或 Miniconda (如果尚未安装)
    # https://www.anaconda.com/products/distribution
    # https://docs.conda.io/en/latest/miniconda.html
    
    # 创建虚拟环境,例如创建一个名为 "myenv" 的虚拟环境,并指定Python版本为3.8
    conda create -n myenv python=3.8
    
    # 激活虚拟环境
    conda activate myenv
    
    # 退出虚拟环境
    conda deactivate
    

    代码解释:

    • conda create -n myenv python=3.8: 使用conda创建名为 “myenv” 的虚拟环境,并指定Python版本为3.8。 myenv 是虚拟环境的名称,可以自定义。 你可以根据需要指定不同的Python版本。

    • conda activate myenv: 激活名为 “myenv” 的虚拟环境。 激活后,终端或命令提示符会显示虚拟环境的名称 (例如 (myenv) )。

    • conda deactivate: 退出虚拟环境,回到base环境 (conda的默认全局环境)。

总结: virtualenv 和 conda 都是优秀的虚拟环境管理工具。 如果你主要使用Python,并且环境管理需求相对简单,virtualenv可能更轻量级。 如果你需要管理多种语言的包,或者进行复杂的数据科学和AI项目,conda可能更强大和方便。 选择哪个工具取决于你的具体需求和偏好。 但无论选择哪个,使用虚拟环境都是良好的Python开发习惯,强烈建议养成使用虚拟环境的习惯。

3. Python 基础语法

掌握Python的基础语法是AI学习的基石。 让我们从最基本的概念开始,逐步深入Python的世界。

3.1 变量和数据类型

在Python中,变量 (Variable) 用于存储数据。 与一些静态类型语言 (如Java, C++) 不同,Python是动态类型语言,这意味着你不需要显式声明变量的类型,Python会根据你赋给变量的值自动推断其类型。

# 数值类型
x = 10      # int (整数)
y = 3.14    # float (浮点数)

# 字符串
name = "Alice"  # str (字符串)
greeting = 'Hello' # 字符串也可以用单引号表示

# 布尔值
is_true = True    # bool (布尔值,真)
is_false = False  # bool (布尔值,假)

# 列表
my_list = [1, 2, 3, "a", "b"]  # list (列表,有序可变序列)

# 元组
my_tuple = (1, 2, 3)          # tuple (元组,有序不可变序列)

# 字典
my_dict = {"name": "Bob", "age": 30}  # dict (字典,键值对集合)

# 集合
my_set = {1, 2, 3, 3}          # set (集合,无序不重复元素集合)
print(my_set) # 输出: {1, 2, 3},集合会自动去重

代码解释:

  • 数值类型 (int, float): 用于表示数字。 int 表示整数,float 表示浮点数 (带小数点的数)。

  • 字符串 (str): 用于表示文本。 字符串需要用引号 (单引号或双引号) 包裹。

  • 布尔值 (bool): 用于表示真假。 只有两个值: True (真) 和 False (假)。 布尔值在条件判断和逻辑运算中非常重要。

  • 列表 (list): 用于表示有序可变序列。 列表中的元素可以是不同类型的,用方括号 [] 包裹,元素之间用逗号 , 分隔。 列表是可变的,这意味着你可以修改列表中的元素,添加或删除元素。

  • 元组 (tuple): 类似于列表,也用于表示有序序列。 但元组是不可变的,一旦创建就不能修改。 元组用圆括号 () 包裹。 元组通常用于表示不可变的数据集合,或者作为函数的返回值。

  • 字典 (dict): 用于表示键值对 (key-value pairs) 集合。 字典中的每个元素都是一个键值对,键 (key) 必须是唯一的且不可变的 (通常是字符串或数字),值 (value) 可以是任意类型。 字典用花括号 {} 包裹,键值对之间用逗号 , 分隔,键和值之间用冒号 : 分隔。 字典非常适合表示具有结构化信息的数据。

  • 集合 (set): 用于表示无序不重复元素集合。 集合中的元素是唯一的,重复元素会自动去重。 集合用花括号 {}set() 函数创建。 集合主要用于去重、成员关系测试和集合运算 (如并集、交集、差集)。

3.2 运算符

Python提供了丰富的运算符,用于进行各种运算操作。

# 算术运算符
print(10 + 3)  # 加法,输出: 13
print(10 - 3)  # 减法,输出: 7
print(10 * 3)  # 乘法,输出: 30
print(10 / 3)  # 除法,输出: 3.3333333333333335 (结果为浮点数)
print(10 // 3) # 整除,输出: 3 (结果为整数,向下取整)
print(10 % 3)  # 取余 (模运算),输出: 1 (10除以3的余数)
print(10 ** 3) # 幂运算,输出: 1000 (10的3次方)

# 比较运算符
print(10 > 3)  # 大于,输出: True
print(10 < 3)  # 小于,输出: False
print(10 == 3) # 等于,输出: False
print(10 != 3) # 不等于,输出: True
print(10 >= 3) # 大于等于,输出: True
print(10 <= 3) # 小于等于,输出: False

# 逻辑运算符
print(True and False)  # 逻辑与,输出: False (都为真才为真)
print(True or False)   # 逻辑或,输出: True (至少一个为真即为真)
print(not True)        # 逻辑非,输出: False (取反)

# 赋值运算符
x = 10        # 简单赋值
x += 3        # 加法赋值,等价于 x = x + 3
x -= 3        # 减法赋值,等价于 x = x - 3
x *= 3        # 乘法赋值,等价于 x = x * 3
x /= 3        # 除法赋值,等价于 x = x / 3
x //= 3       # 整除赋值,等价于 x = x // 3
x %= 3        # 取余赋值,等价于 x = x % 3
x **= 3       # 幂赋值,等价于 x = x ** 3

# 成员运算符
print(2 in [1, 2, 3])  # 成员运算符 in,判断元素是否在序列中,输出: True
print(4 not in [1, 2, 3]) # 成员运算符 not in,判断元素是否不在序列中,输出: True

# 身份运算符
x = [1, 2]
y = [1, 2]
print(x is y)  # 身份运算符 is,判断两个变量是否引用同一个对象,输出: False (x 和 y 指向不同的列表对象,即使内容相同)
z = x
print(x is z)  # 身份运算符 is,输出: True (z 和 x 引用同一个列表对象)
print(x is not y) # 身份运算符 is not,判断两个变量是否引用不同的对象,输出: True

代码解释:

  • 算术运算符: 用于进行基本的数学运算。

  • 比较运算符: 用于比较两个值的大小或关系,返回布尔值 (True 或 False)。

  • 逻辑运算符: 用于进行逻辑运算 (与、或、非),操作数和结果都是布尔值。

  • 赋值运算符: 用于给变量赋值。 除了简单的赋值运算符 =,还有复合赋值运算符,例如 +=, -=, *=, /=, //=, %=, **=,可以简化代码。

  • 成员运算符 (in, not in): 用于判断一个元素是否属于一个序列 (如列表、元组、字符串、集合)。

  • 身份运算符 (is, is not): 用于判断两个变量是否引用同一个对象。 注意 is== 的区别: is 比较的是对象的身份 (内存地址),而 == 比较的是对象的值 (内容)。 即使两个变量的值相等,但如果它们指向不同的对象,is 运算符也会返回 False

3.3 控制流

控制流语句用于控制程序的执行流程,根据条件或循环执行不同的代码块。

# 条件语句 (if-elif-else)
age = 20
if age >= 18:
    print("成年人") # 如果 age >= 18,执行此代码块
elif age >= 13:
    print("青少年") # 如果 age >= 18 不成立,但 age >= 13 成立,执行此代码块
else:
    print("儿童")   # 如果以上条件都不成立,执行此代码块

# 循环语句 (for 循环)
# for 循环通常用于遍历序列 (如列表、元组、字符串) 或其他可迭代对象
for i in range(5):  # range(5) 生成一个整数序列 0, 1, 2, 3, 4
    print(i)      # 循环体,对序列中的每个元素执行一次

for item in ["a", "b", "c"]:
    print(item)   # 遍历列表中的每个元素

# 循环语句 (while 循环)
# while 循环在条件为真时重复执行代码块,直到条件为假
count = 0
while count < 5:  # 循环条件
    print(count)
    count += 1    # 循环体,每次循环后 count 加 1,直到 count >= 5 条件为假

# break 和 continue
# break 语句用于立即跳出循环,终止循环的执行
# continue 语句用于跳过当前循环的剩余代码,继续下一次循环
for i in range(10):
    if i == 5:
        break      # 当 i 等于 5 时,跳出循环
    if i % 2 == 0:
        continue   # 当 i 为偶数时,跳过本次循环,继续下一次循环
    print(i)      # 只会打印奇数 1, 3

代码解释:

  • 条件语句 (if-elif-else): 根据条件判断执行不同的代码块。 if 引导主条件,elif (else if 的缩写) 引导其他条件,else 引导所有条件都不满足时执行的代码块。 elifelse 分支是可选的,可以只有 if 分支。

  • 循环语句 (for 循环): 用于遍历序列或其他可迭代对象。 for 循环会依次取出序列中的每个元素,并执行循环体。 range() 函数可以生成一个整数序列,常用于控制循环次数。

  • 循环语句 (while 循环): 在条件为真时重复执行代码块。 while 循环需要设置循环条件和循环体,循环体中通常需要有改变循环条件的语句,以避免无限循环 (死循环)。

  • break 语句: 用于立即跳出循环,终止循环的执行。 通常在循环内部的条件判断中使用,当满足某个条件时,提前结束循环。

  • continue 语句: 用于跳过当前循环的剩余代码,继续下一次循环。 通常在循环内部的条件判断中使用,当满足某个条件时,跳过本次循环的后续代码,直接进入下一次循环。

3.4 函数

函数 (Function) 是组织好的,可重复使用的代码块,用于执行特定任务。 函数可以提高代码的模块化程度和代码复用率。

# 定义函数
def greet(name):  # def 关键字定义函数,greet 是函数名,name 是参数
    """
    这是一个打招呼的函数。
    """
    print("Hello,", name)  # 函数体

# 调用函数
greet("Bob")  # 调用 greet 函数,传入参数 "Bob",输出: Hello, Bob

# 参数传递
def my_func(a, b, c=3):  # c 是默认参数,调用时可以省略
    print(a, b, c)

my_func(1, 2)      # 位置参数,a=1, b=2, c使用默认值 3,输出: 1 2 3
my_func(1, 2, 4)   # 位置参数,a=1, b=2, c=4,输出: 1 2 4
my_func(b=2, a=1)  # 关键字参数,指定参数名赋值,顺序可以不同,c使用默认值 3,输出: 1 2 3

def my_func2(*args):  # 可变位置参数,*args 接收任意数量的位置参数,以元组形式存储
    print(args)

my_func2(1, 2, 3)  # 输出: (1, 2, 3)

def my_func3(**kwargs):  # 可变关键字参数,**kwargs 接收任意数量的关键字参数,以字典形式存储
    print(kwargs)

my_func3(name="Alice", age=30)  # 输出: {'name': 'Alice', 'age': 30}

# 返回值
def add(x, y):
    return x + y  # return 语句返回值

result = add(3, 5)
print(result)  # 输出: 8

# 匿名函数 (lambda 函数)
# lambda 函数是一种简洁的单行匿名函数,通常用于简单的函数逻辑
square = lambda x: x**2  # lambda 关键字定义匿名函数,x 是参数,x**2 是返回值
print(square(5))  # 输出: 25

# 作用域 (global, nonlocal)
global_var = 10  # 全局变量

def my_func4():
    local_var = 20  # 局部变量,只在函数内部有效
    global global_var  # 声明使用全局变量 global_var
    global_var = 30   # 修改全局变量 global_var
    # nonlocal nonlocal_var # 在嵌套函数中使用上一层函数的变量 (这里没有嵌套函数,暂时注释)

my_func4()
print(global_var)  # 输出: 30,全局变量 global_var 被修改

代码解释:

  • 定义函数 (def): 使用 def 关键字定义函数,后面跟函数名、参数列表 (可选) 和冒号 :。 函数体是缩进的代码块。

  • 参数传递:

    • 位置参数: 按参数定义的顺序传递参数。
    • 关键字参数: 通过指定参数名来传递参数,可以不按顺序传递。
    • 默认参数: 在定义函数时,可以为参数设置默认值。 如果调用函数时没有传递该参数,则使用默认值。
    • *可变位置参数 (args): 使用 *args 可以接收任意数量的位置参数,这些参数会被收集到一个元组 args 中。
    • **可变关键字参数 (kwargs): 使用 **kwargs 可以接收任意数量的关键字参数,这些参数会被收集到一个字典 kwargs 中。
  • 返回值 (return): return 语句用于从函数返回一个值。 函数可以没有 return 语句,此时函数默认返回 None

  • 匿名函数 (lambda 函数): 使用 lambda 关键字定义匿名函数。 lambda 函数只能包含一个表达式,表达式的结果就是函数的返回值。 lambda 函数通常用于简单的函数逻辑,或者作为高阶函数的参数。

  • 作用域 (global, nonlocal):

    • 局部变量: 在函数内部定义的变量,只在函数内部有效。
    • 全局变量: 在函数外部定义的变量,在整个程序中都有效。
    • global 关键字: 在函数内部使用 global 关键字声明一个变量为全局变量,可以修改全局变量的值。
    • nonlocal 关键字: 在嵌套函数中使用 nonlocal 关键字声明一个变量为上一层函数的局部变量,可以修改上一层函数的局部变量的值。 (这里没有嵌套函数,nonlocal 关键字暂时注释)
3.5 面向对象编程 (OOP)

Python 是一种面向对象的编程语言。 面向对象编程 (OOP) 是一种编程范式,它将数据和操作数据的方法组织成对象 (Object)类 (Class) 是创建对象的蓝图或模板。

# 定义类
class Dog:  # class 关键字定义类,Dog 是类名,类名通常首字母大写
    # 类属性 (属于类本身,所有对象共享)
    species = "Canis familiaris"

    # 构造函数 (初始化对象,在创建对象时自动调用)
    def __init__(self, name, age):  # __init__ 方法是构造函数,self 参数指向对象自身
        # 实例属性 (属于对象,每个对象拥有自己的属性)
        self.name = name    # self.name 是实例属性,name 是参数
        self.age = age      # self.age 是实例属性,age 是参数

    # 实例方法 (属于对象,对象可以调用的方法)
    def bark(self):         # self 参数指向调用该方法的对象
        print("Woof!")

    def describe(self):
        print(f"{self.name} is {self.age} years old.") # f-string 格式化字符串

# 创建对象 (实例化类)
my_dog = Dog("Buddy", 3)  # 调用 Dog 类创建 Dog 对象,传入参数 "Buddy" 和 3

# 访问属性
print(my_dog.name)  # 访问 my_dog 对象的 name 属性,输出: Buddy
print(my_dog.age)   # 访问 my_dog 对象的 age 属性,输出: 3
print(Dog.species)   # 访问 Dog 类的 species 类属性,输出: Canis familiaris

# 调用方法
my_dog.bark()       # 调用 my_dog 对象的 bark 方法,输出: Woof!
my_dog.describe()   # 调用 my_dog 对象的 describe 方法,输出: Buddy is 3 years old.

# 继承 (Inheritance)
# 继承允许创建一个新类 (子类),继承已有类 (父类) 的属性和方法,并可以扩展或修改
class GoldenRetriever(Dog):  # GoldenRetriever 类继承自 Dog 类
    def __init__(self, name, age, color):  # 子类构造函数
        super().__init__(name, age)  # 调用父类 Dog 的构造函数,初始化 name 和 age 属性
        self.color = color         # 子类新增属性 color

    def fetch(self):              # 子类新增方法 fetch
        print("Fetching...")

my_golden = GoldenRetriever("Goldie", 5, "golden")  # 创建 GoldenRetriever 对象
my_golden.bark()       # 调用继承自 Dog 类的 bark 方法,输出: Woof!
my_golden.describe()   # 调用继承自 Dog 类的 describe 方法,输出: Goldie is 5 years old.
my_golden.fetch()      # 调用 GoldenRetriever 类自己的 fetch 方法,输出: Fetching...
print(my_golden.species) # 访问继承自 Dog 类的 species 类属性,输出: Canis familiaris
print(my_golden.color)   # 访问 GoldenRetriever 类自己的 color 属性,输出: golden

代码解释:

  • 类 (class) 和对象 (object): class 关键字定义类,类是对象的模板。 对象是类的实例。 创建对象的过程称为实例化 (Instantiation)

  • 属性 (attribute) 和方法 (method): 属性是对象的数据,方法是对象可以执行的操作。 类属性属于类本身,所有对象共享。 实例属性属于对象,每个对象拥有自己的属性。 实例方法是对象可以调用的方法,第一个参数必须是 self,指向调用该方法的对象。

  • 构造函数 (__init__): __init__ 方法是特殊的方法,称为构造函数。 在创建对象时自动调用,用于初始化对象的属性。 构造函数的第一个参数必须是 self

  • 继承 (inheritance): 继承允许创建一个新类 (子类),继承已有类 (父类) 的属性和方法。 子类可以扩展或修改父类的属性和方法,实现代码复用和层次化结构。 使用 class SubClass(SuperClass): 语法表示继承。 super() 函数用于调用父类的方法 (如构造函数)。

  • 多态 (polymorphism): 多态是指不同类的对象可以对相同的方法名做出不同的响应。 Python 是一种动态类型语言,天然支持多态。 例如,不同的动物类可能都有 speak() 方法,但不同动物的 speak() 方法实现不同,这就是多态。 (代码示例中没有显式展示多态,但OOP本身就支持多态)

  • 封装 (encapsulation): 封装是指将数据 (属性) 和操作数据的方法 (方法) 封装在对象内部,对外隐藏对象的内部实现细节,只暴露必要的接口。 Python 通过类来实现封装。 通过访问控制 (如私有属性和方法,以 __ 开头命名),可以限制对象外部对内部数据的直接访问,提高代码的安全性和可维护性。 (代码示例中没有显式展示封装的访问控制,但OOP本身就支持封装)

4. Python 常用库简介

Python之所以在AI领域如此强大,很大程度上得益于其丰富的第三方库。 这些库就像一个个强大的工具箱,为我们提供了各种各样的功能,极大地简化了AI开发过程。

  • 4.1 NumPy:科学计算的基石

    NumPy (Numerical Python) 是Python科学计算的核心库,提供了高性能的多维数组对象 ndarray,以及大量的数学函数和线性代数运算工具。 NumPy是许多其他科学计算库 (如Pandas, Scikit-learn, Matplotlib) 的基础。

  • 4.2 Pandas:数据分析的瑞士军刀

    Pandas 是基于NumPy构建的数据分析库,提供了强大的 DataFrame 对象,用于高效地处理和分析结构化数据 (如表格数据、时间序列数据)。 Pandas 提供了数据清洗、转换、聚合、合并、切片、索引等各种数据操作功能,是数据分析师和AI工程师必备的工具。

  • 4.3 Matplotlib:数据可视化的艺术

    Matplotlib 是Python中最流行的绘图库,用于创建各种静态、交互式、动态的可视化图表,包括折线图、散点图、柱状图、饼图、直方图、3D图等。 Matplotlib 可以帮助我们直观地理解数据、探索数据规律、展示分析结果。 Seaborn 是基于Matplotlib的高级可视化库,提供了更美观和更高级的统计图表。

  • 4.4 Scikit-learn:机器学习的百宝箱

    Scikit-learn (sklearn) 是Python中最流行的机器学习库之一,提供了大量的机器学习算法和模型评估工具,包括分类、回归、聚类、降维、模型选择、预处理等。 Scikit-learn 接口简洁统一,文档完善,易于学习和使用,是机器学习入门和实践的首选库。

  • 4.5 TensorFlow/Keras:深度学习的引擎

    TensorFlow 是Google开源的深度学习框架,是目前最流行的深度学习框架之一。 TensorFlow 提供了强大的计算图模型、自动求导机制、GPU加速等功能,支持构建和训练各种复杂的神经网络模型。 Keras 是一个高级神经网络API,可以运行在TensorFlow之上,提供了更简洁、更易用的接口,降低了深度学习的入门门槛。

  • 4.6 其他常用库:

    除了以上核心库,Python在AI领域还有许多其他常用的库:

    • PyTorch: 另一个流行的深度学习框架,由Facebook开源,以其灵活性和易用性著称,在研究领域应用广泛。
    • os: 操作系统接口库,用于文件和目录操作、系统路径处理等。
    • sys: 系统相关参数和函数库,用于访问命令行参数、解释器版本等。
    • argparse: 命令行参数解析库,用于编写命令行工具。
    • requests: HTTP请求库,用于访问网络资源、爬取网页数据等。
    • json: JSON数据处理库,用于解析和生成JSON格式数据。
    • datetime: 日期和时间处理库,用于处理日期和时间相关的数据。
    • OpenCV: 计算机视觉库,用于图像处理、视频分析、目标检测等。
    • NLTK/SpaCy: 自然语言处理库,用于文本分析、词性标注、命名实体识别等。

5. Python 在 AI 中的应用

Python在AI领域的应用几乎涵盖了所有方面。 无论是数据预处理、特征工程、模型训练、模型评估、模型部署,还是各种具体的AI应用场景,Python都扮演着重要的角色。

  • 数据处理: 使用 Pandas 清洗、转换、分析各种类型的数据,包括结构化数据、文本数据、图像数据、音频数据等。

  • 数据可视化: 使用 Matplotlib, Seaborn 等库绘制各种图表,探索数据规律、展示分析结果、可视化模型效果。

  • 机器学习: 使用 Scikit-learn 构建和训练各种经典的机器学习模型,例如线性回归、逻辑回归、决策树、支持向量机、随机森林、聚类算法等。

  • 深度学习: 使用 TensorFlow/Keras 或 PyTorch 构建和训练各种深度学习模型,例如卷积神经网络 (CNN)、循环神经网络 (RNN)、Transformer 等,应用于图像识别、自然语言处理、语音识别等领域。

  • 自然语言处理 (NLP): 使用 NLTK, SpaCy, Gensim, Hugging Face Transformers 等库进行文本处理、情感分析、机器翻译、文本生成、对话系统等NLP任务。

  • 计算机视觉 (CV): 使用 OpenCV, Pillow, Scikit-image 等库进行图像处理、图像识别、目标检测、图像分割、人脸识别等CV任务。

  • 强化学习 (RL): 使用 OpenAI Gym, TensorFlow Agents, PyTorch RL 等库进行强化学习算法的开发和训练,应用于游戏AI、机器人控制、自动驾驶等领域。

6. 总结与下一步

恭喜你! 通过本篇博文的学习,你已经迈出了AI学习的第一步,掌握了AI开发最重要的工具——Python编程语言的基础知识。 我们一起探索了Python的魅力,学习了Python的安装配置、基本语法、常用库,以及在AI领域的广泛应用。

掌握Python编程是成为AI高手的必要条件。 但学习是一个循序渐进的过程,仅仅掌握基础语法还远远不够。 冰冻三尺非一日之寒,功到自然成。 接下来,我们需要继续深入学习Python的常用库,例如NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow/Keras 等,并逐步深入机器学习和深度学习的世界。

学习编程最有效的方法就是实践! 多写代码,多做项目,才能真正掌握Python编程技能,并将其应用到AI开发中。

7. 挑战任务

为了巩固你今天所学的知识,并激发你进一步学习Python的热情,我为你准备了一些挑战任务:

  1. 安装: 如果你还没有安装Python和IDE,请立即行动,安装Python (推荐Python 3.7+) 和一个你喜欢的IDE或代码编辑器 (推荐Jupyter Notebook 或 VS Code)。

  2. 练习: 完成以下Python编程练习:

    • 编写程序计算 1 到 100 的和。
    • 编写程序判断一个数是否为素数。
    • 编写程序实现一个简单的计算器,支持加减乘除四则运算。
    • 编写程序实现一个猜数字游戏,电脑随机生成一个1到100的数字,玩家输入猜测的数字,程序根据猜测结果给出提示 (大了或小了),直到猜对为止。
    • 创建一个列表,包含 10 个你最喜欢的电影或书籍的名称,然后:
      • 打印列表的长度。
      • 打印列表的第一个和最后一个元素。
      • 将列表倒序排列。
      • 在列表末尾添加一个新的电影或书籍。
      • 删除列表中的一个电影或书籍。
    • 创建一个字典,包含你的姓名、年龄、性别和职业,然后:
      • 打印字典的所有键。
      • 打印字典的所有值。
      • 打印字典的所有键值对。
      • 向字典中添加一个新的键值对。
      • 删除字典中的一个键值对。
    • 定义一个函数,接受一个列表作为参数,返回列表中的最大值和最小值。
    • 定义一个函数,接受一个字符串作为参数,返回字符串中每个字符出现的次数。
    • 定义一个类 Student,表示一个学生,包含姓名、年龄、学号和成绩等属性,以及一个计算平均成绩的方法 calculate_average_score()
  3. 阅读: 认真阅读 Python 官方教程(https://docs.python.org/3/tutorial/)的前几章,加深对Python基础语法的理解。

  4. 探索: 浏览并尝试使用第4节中提到的常用库的官方文档和教程,例如NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow/Keras 等,了解它们的基本功能和用法。

千里之行,始于足下。 希望这篇博文能帮助你顺利入门Python编程,开启你的AI学习之旅! 如果你在学习过程中遇到任何问题或有任何建议,欢迎在评论区留言交流。 让我们一起在AI的道路上砥砺前行,成为真正的AI高手! 下一篇文章,我们将开始深入学习NumPy库,敬请期待!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海棠AI实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值