一、Haar 级联检测器(Haar Cascade Detector)
1. 基本原理
Haar 级联检测器是一种基于 机器学习 和 特征工程 的目标检测算法,主要用于实时人脸检测(也可扩展至其他物体检测)。其核心思想是:
- 使用 Haar-like 特征 快速描述图像局部区域的亮度变化(如边缘、线条、中心环绕等)。
- 通过 级联结构的强分类器(由多个弱分类器组成)实现快速筛选,减少后续复杂计算量。
Haar-like 特征
- 定义:由相邻矩形区域的像素值差值构成,反映局部区域的对比度差异。
- 常见类型:
- 边缘特征(如两矩形横向或纵向排列,检测边缘)。
- 线性特征(三矩形排列,检测中间亮 / 暗的线条)。
- 中心环绕特征(四矩形排列,检测中心区域与周围的差异)。
- 计算优化:通过 积分图(Integral Image) 快速计算任意矩形区域的像素和,将特征计算时间从 \(O(n^2)\) 降至 \(O(1)\)。
- 常见类型: