程序代码篇---Haar 级联检测器&LBPH 算法

一、Haar 级联检测器(Haar Cascade Detector)

1. 基本原理

Haar 级联检测器是一种基于 机器学习 和 特征工程 的目标检测算法,主要用于实时人脸检测(也可扩展至其他物体检测)。其核心思想是:

  • 使用 Haar-like 特征 快速描述图像局部区域的亮度变化(如边缘、线条、中心环绕等)。
  • 通过 级联结构的强分类器(由多个弱分类器组成)实现快速筛选,减少后续复杂计算量。
Haar-like 特征
  • 定义:由相邻矩形区域的像素值差值构成,反映局部区域的对比度差异。
    • 常见类型:
      • 边缘特征(如两矩形横向或纵向排列,检测边缘)。
      • 线性特征(三矩形排列,检测中间亮 / 暗的线条)。
      • 中心环绕特征(四矩形排列,检测中心区域与周围的差异)。
    • 计算优化:通过 积分图(Integral Image) 快速计算任意矩形区域的像素和,将特征计算时间从 \(O(n^2)\) 降至 \(O(1)\)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值