对比ResNet和denseNet、efficientNet对5种花分类效果

本文通过使用ResNet50、DenseNet121和EfficientNetB5三种模型,对比了它们在五种花卉分类任务上的性能。实验在相同条件下进行,包括图片增强和超参数设置。结果显示,DenseNet121在准确率上与ResNet50相当,但收敛速度更快且更稳定。两者的表现均优于EfficientNetB5。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对比ResNet和denseNet、efficientNet对5种花分类效果

  • 实现框架 keras

效果对比

在相同的图片增强以及超参,10epoch,三种模型的准确率和损失表现如下:

  • resNet50与denseNet121,准确率差别不大,后者表现更稳定,收敛更快;两者的表现均比efficientNetB5要好。

准确率

准确率

损失值

损失值

所有代码https://github.com/u19900101/keras-learning

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值