数论数学知识

1.数论:

质数:针对从2开始的整数来定义的。在大于1的整数中,如果只包含1和本身这两个约数,就被称为质数或者叫素数。

(1)质数的判定:试除法

#include <iostream>
#include <algorithm>
using namespace std;
bool is_prime(int n)
{
    if(n<2) false;
    for(int i=2;i<n;i++)  //暴力 时间复杂度O(n)
    {
        if(n%i==0)
            return false;
    }
    return true;
}
//
bool is_prime(int n)
{
    if(n<2) false;
    for(int i=2;i <= n/i;i++)  //优化 时间复杂度O(sqrt(n))
    {
        if(n%i==0)
            return false;
    }
    return true;
}
int main()
{
    
    return 0;
}

2.分解质因数:试除法 

n中最多只包含一个大于sqrt(n)的质因子

#include <iostream>
#include <algorithm>
using namespace std;


void divide(int n)
{
    for(int i=2;i <= n/i;i++)
    {
        if(n%i == 0)
        {
            int s = 0;
            while(n%i == 0)
            {
                 n/=i;
                 s++;
            }
            cout<<i<<" "<<s<<endl;
        }
    }
    if(n>1) cout<<n<<" "<<1<<endl;
    cout<<endl;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(NULL), cout.tie(NULL);
    int n;
    cin>>n;
    while(n--)
    {
        int x;
        cin>>x;
        divide(x);
    }
    return 0;
}

3.筛质数 

//埃式筛法
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1000010;
int primes[N], cnt;
bool st[N];

void find_primes(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!st[i])
        {
            primes[cnt++]=n;
            for(int j=i+i;j<=n;j+=i) st[j] = true;  //放到里面优化
        }
    }
    cout<<cnt;
}

int main()
{
    int n;
    cin>>n;
    find_primes(n);
    return 0;
}

2.组合计数:

3.高斯消元:

4.简单博弈论:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值