难度较大>< 但可以取巧。
题目:
题目描述
因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数。
写一个程序来找出范围[a,b](5 <= a < b <= 100,000,000)( 一亿)间的所有回文质数;
输入输出格式
输入格式:
第 1 行: 二个整数 a 和 b .
输出格式:
输出一个回文质数的列表,一行一个。
分析:
- 最大值为1亿。。暴力循环会超时。
- 经过简单的分析,一位数和两位数的回文,且是质数的很少, 直接判断输入长度 打表输出即可。 可以省出很多时间。
- 参考代码中生成回文的方法。
代码:
#include<bits/stdc++.h>
using namespace std;
bool ispr(int n)
{
for(int k=2;k<=sqrt(n);++k)
if(n%k==0)
return false;
return true;
}
int getsize(int n)
{
int m=1,k=n;
while(k>9)
{
k/=10;
++m;
}
return m;
}
int main()
{
int l,m,n,q,w,i,j,k;
cin>>m>>n;
q=getsize(m);
w=getsize(n);
if(q<=1&&w>=1)
{
if((m<=5)&&(n>=5))
cout<<5<<endl;
if((m<=7)&&(n>=7))
cout<<7<<endl;
}
if((q<=2)&&(w>=2))
{
if((m<=11)&&(n>=11))
cout<<11<<endl;
}
if((q<=3)&&(w>=3))
{
for(int a=1;a<=9;a+=2)
for(int b=0;b<=9;++b)
{
int f=a*100+b*10+a;
if(f<m)
continue;
if(f>n)
return 0;
if(ispr(f))
cout<<f<<endl;
}
}
if((q<=5)&&(w>=5))
{
for(int a=1;a<=9;a+=2)
for(int b=0;b<=9;++b)
for(int c=0;c<=9;++c)
{
int f=a*10000+b*1000+c*100+b*10+a;
if(f<m)
continue;
if(f>n)
return 0;
if(ispr(f))
cout<<f<<endl;
}
}
if((q<=7)&&(w>=7))
{
for(int a=1;a<=9;a+=2)
for(int b=0;b<=9;++b)
for(int c=0;c<=9;++c)
for(int d=0;d<=9;++d)
{
int f=a*1000000+b*100000+c*10000+d*1000+c*100+b*10+a;
if(f<m)
continue;
if(f>n)
return 0;
if(ispr(f))
cout<<f<<endl;
}
}
return 0;
}
洛谷大佬:
本题难度相对比较大,核心思路:利用题目给的回文数方法列出所有回文数,再判断是否为质数。
步骤:
1)输入m,n后,编写一个函数求m,n的位数以决定以下操作哪些可以全部跳过,哪些操作至少要做一部分。
2)1位回文质数只有5,7;2位回文质数只有11。因此此部分可以直接打表。
3)可以证明不存在4,6,8位(以及更大偶数位)的回文质数。这一点可以通过一个完全枚举回文质数的程序运行结果证实。因此此部分可以忽略。
4)9位数最多只有100000000一个数,而且不是回文质数。因此此部分可以忽略。
5)注意每一个打表或构造得到的回文数,要判断是否在闭区间[m,n]内。小于m就continue,大于n就return 0(因为此后所有数一定都大于n)。
6)每个经过上述四步得到的回文数,输出并换行即可。
AC代码(C++)(看起来比较繁琐,但每一步都独立而清晰【自吹中……】)