P1217 [USACO1.5]回文质数 Prime Palindromes

难度较大>< 但可以取巧

题目:

题目描述
因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数。
写一个程序来找出范围[a,b](5 <= a < b <= 100,000,000)( 一亿)间的所有回文质数;
输入输出格式
输入格式:
第 1 行: 二个整数 a 和 b .
输出格式:
输出一个回文质数的列表,一行一个。

分析:

  • 最大值为1亿。。暴力循环会超时。
  • 经过简单的分析,一位数和两位数的回文,且是质数的很少, 直接判断输入长度 打表输出即可。 可以省出很多时间。
  • 参考代码中生成回文的方法。

代码:

#include<bits/stdc++.h>
using namespace std;
bool ispr(int n)
{
    for(int k=2;k<=sqrt(n);++k)
    if(n%k==0)
    return false;
    return true;
}
int getsize(int n)
{
    int m=1,k=n;
    while(k>9)
    {
        k/=10;
        ++m;
    }
    return m;
}
int main()
{
    int l,m,n,q,w,i,j,k;
    cin>>m>>n;
    q=getsize(m);
    w=getsize(n);
    if(q<=1&&w>=1)
    {
        if((m<=5)&&(n>=5))
        cout<<5<<endl;
        if((m<=7)&&(n>=7))
        cout<<7<<endl;
    }
    if((q<=2)&&(w>=2))
    {
        if((m<=11)&&(n>=11))
        cout<<11<<endl;
    }
    if((q<=3)&&(w>=3))
    {
        for(int a=1;a<=9;a+=2)
        for(int b=0;b<=9;++b)
        {
            int f=a*100+b*10+a;
            if(f<m)
            continue;
            if(f>n)
            return 0; 
            if(ispr(f))
            cout<<f<<endl;
        }
    }
    if((q<=5)&&(w>=5))
    {
        for(int a=1;a<=9;a+=2)
        for(int b=0;b<=9;++b)
        for(int c=0;c<=9;++c)
        {
            int f=a*10000+b*1000+c*100+b*10+a;
            if(f<m)
            continue;
            if(f>n)
            return 0; 
            if(ispr(f))
            cout<<f<<endl;
        }
    }
    if((q<=7)&&(w>=7))
    {
        for(int a=1;a<=9;a+=2)
        for(int b=0;b<=9;++b)
        for(int c=0;c<=9;++c)
        for(int d=0;d<=9;++d)
        {
            int f=a*1000000+b*100000+c*10000+d*1000+c*100+b*10+a;
            if(f<m)
            continue;
            if(f>n)
            return 0; 
            if(ispr(f))
            cout<<f<<endl;
        }
    }
    return 0;
}

洛谷大佬:

本题难度相对比较大,核心思路:利用题目给的回文数方法列出所有回文数,再判断是否为质数。

步骤:

1)输入m,n后,编写一个函数求m,n的位数以决定以下操作哪些可以全部跳过,哪些操作至少要做一部分。

2)1位回文质数只有5,7;2位回文质数只有11。因此此部分可以直接打表。

3)可以证明不存在4,6,8位(以及更大偶数位)的回文质数。这一点可以通过一个完全枚举回文质数的程序运行结果证实。因此此部分可以忽略。

4)9位数最多只有100000000一个数,而且不是回文质数。因此此部分可以忽略。

5)注意每一个打表或构造得到的回文数,要判断是否在闭区间[m,n]内。小于m就continue,大于n就return 0(因为此后所有数一定都大于n)。

6)每个经过上述四步得到的回文数,输出并换行即可。

AC代码(C++)(看起来比较繁琐,但每一步都独立而清晰【自吹中……】)

### USACO P1217 Prime Palindromes 的 Java 实现 以下是基于枚举方法并结合回文数构造的方式实现的一个高效解决方案。此方案利用了回文数的特性以及质数判断算法,从而避免了大量的冗余计算。 #### 方法概述 为了提高效率,可以先生成给定范围内所有的回文数,再逐一验证这些回文数是否为质数。这种方法显著减少了需要测试的数量,因为大多数非回文数可以直接排除[^4]。 #### AC代码 (Java) ```java import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int a = scanner.nextInt(); int b = scanner.nextInt(); List<Integer> result = findPalindromePrimes(a, b); for (int num : result) { System.out.println(num); } } private static boolean isPrime(int n) { if (n < 2) return false; if (n == 2 || n == 3) return true; // 特殊情况处理 if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i += 6) { // 跳过偶数和能被3整除的数 if (n % i == 0 || n % (i + 2) == 0) return false; } return true; } private static List<Integer> generatePalindromes(int length) { List<Integer> palindromes = new ArrayList<>(); if (length == 1) { for (int i = 0; i <= 9; i++) { palindromes.add(i); } return palindromes; } int halfLength = (length + 1) / 2; int start = (int) Math.pow(10, halfLength - 1); int end = (int) Math.pow(10, halfLength); for (int prefix = start; prefix < end; prefix++) { String s = Integer.toString(prefix); StringBuilder sb = new StringBuilder(s); if (length % 2 == 0) { sb.append(new StringBuilder(s).reverse()); } else { sb.append(new StringBuilder(s.substring(0, s.length() - 1)).reverse()); } palindromes.add(Integer.parseInt(sb.toString())); } return palindromes; } private static List<Integer> findPalindromePrimes(int a, int b) { List<Integer> primes = new ArrayList<>(); for (int len = 1; len <= 8 && Math.pow(10, len - 1) <= b; len++) { List<Integer> candidates = generatePalindromes(len); // 构造长度为len的所有回文数 for (int candidate : candidates) { if (candidate >= a && candidate <= b && isPrime(candidate)) { primes.add(candidate); } } } return primes; } } ``` --- #### 关键点解释 1. **回文数生成逻辑**: 使用 `generatePalindromes` 函数动态生成指定长度的回文数。对于奇数长度的回文数,中间字符不重复;而对于偶数长度,则完全对称。 2. **质数检测优化**: 利用了跳过偶数和能被3整除的数的方法,并进一步缩小循环范围至平方根级别 \( \sqrt{n} \)。 3. **边界条件处理**: 需要特别注意上下界 `[a, b]` 和最大可能值 \(10^8\) 的约束条件[^2]。 --- #### 时间复杂度分析 由于只针对回文数进行质数检验,而且回文数数量远少于总自然数数量,因此该算法的时间复杂度相较于暴力解法大幅降低。具体时间复杂度取决于区间大小和回文数分布密度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值