苹果
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
ctest有n个苹果,要将它放入容量为v的背包。给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值。
-
输入
- 有多组测试数据,每组测试数据第一行为2个正整数,分别代表苹果的个数n和背包的容量v,n、v同时为0时结束测试,此时不输出。接下来的n行,每行2个正整数,用空格隔开,分别代表苹果的大小c和价钱w。所有输入数字的范围大于等于0,小于等于1000。 输出
- 对每组测试数据输出一个整数,代表能放入背包的苹果的总价值。 样例输入
-
3 3 1 1 2 1 3 1 0 0
样例输出
-
2
解题思路
:这是个动态规划问题,类似于背包问题,不同的是这里的每件物品仅此只有一件。背包体积一定,从v开始倒序,利用动态转移方程f[j]=max(f[j],f[j-s[i].c]+s[i].w),每次求出当前最优解,当遍历到最后时,求出的就是最优解。下面是分别用一维数组和二维数组写的代码: 具体动态规划(背包讲解 链接:点击打开链接)
具体代码: //一维数组 #include <stdio.h> struct Apple { int c,w; }s[1005]; int max(int a,int b) { return a>b?a:b; } int main() { int n,v; while(scanf("%d%d",&n,&v)) { if(n==0&&v==0) break; int i,j; int f[1005]={0}; for(i=1;i<=n;i++) scanf("%d%d",&s[i].c,&s[i].w); for(i=1;i<=n;i++) for(j=v;j>=s[i].c;j--) f[j]=max(f[j],f[j-s[i].c]+s[i].w); printf("%d\n",f[v]); } return 0; }
//二维数组 #include <stdio.h> #include <string.h> int c[1005]; int w[1005]; int dp[1005][1005]; int max(int a,int b) { return a>b?a:b; } int main() { int n,v; while(scanf("%d%d",&n,&v)) { if(n==0&&v==0) break; int i,j; for(i=1;i<=n;i++) scanf("%d%d",&c[i],&w[i]); memset(dp,0,sizeof(dp)); for(i=1;i<=n;i++) for(j=0;j<=v;j++)//利用二维数组时正序 { if(j>=c[i]) dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]); else dp[i][j]=dp[i-1][j]; } printf("%d\n",dp[n][v]); } return 0; }