NYOJ 289 苹果

苹果

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 3
描述

ctest有n个苹果,要将它放入容量为v的背包。给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值。


输入
有多组测试数据,每组测试数据第一行为2个正整数,分别代表苹果的个数n和背包的容量v,n、v同时为0时结束测试,此时不输出。接下来的n行,每行2个正整数,用空格隔开,分别代表苹果的大小c和价钱w。所有输入数字的范围大于等于0,小于等于1000。
输出
对每组测试数据输出一个整数,代表能放入背包的苹果的总价值。
样例输入
3 3
1 1
2 1
3 1
0 0
样例输出
2
解题思路 :这是个动态规划问题,类似于背包问题,不同的是这里的每件物品仅此只有一件。背包体积一定,从v开始倒序,利用动态转移方程f[j]=max(f[j],f[j-s[i].c]+s[i].w),每次求出当前最优解,当遍历到最后时,求出的就是最优解。下面是分别用一维数组和二维数组写的代码:                          具体动态规划(背包讲解  链接:点击打开链接
具体代码:
//一维数组 
#include <stdio.h>
struct Apple
{
	int c,w;
}s[1005];
int max(int a,int b)
{
	return a>b?a:b;
}
int main()
{
	int n,v;
	while(scanf("%d%d",&n,&v))
	{
		if(n==0&&v==0)
			break;
		int i,j;
		int f[1005]={0};
		for(i=1;i<=n;i++)
			scanf("%d%d",&s[i].c,&s[i].w);
		for(i=1;i<=n;i++)
			for(j=v;j>=s[i].c;j--)
				f[j]=max(f[j],f[j-s[i].c]+s[i].w);
		printf("%d\n",f[v]);
	}
	return 0;
}
//二维数组
#include <stdio.h>
#include <string.h>
int c[1005];
int w[1005];
int dp[1005][1005];
int max(int a,int b)
{
	return a>b?a:b; 
} 
int main()
{
	int n,v;
	while(scanf("%d%d",&n,&v))
	{
		if(n==0&&v==0)
			break;
		int i,j;
		for(i=1;i<=n;i++)
			scanf("%d%d",&c[i],&w[i]);
		memset(dp,0,sizeof(dp));
		for(i=1;i<=n;i++)
			for(j=0;j<=v;j++)//利用二维数组时正序
			{
				if(j>=c[i])
					dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]);
				else
					dp[i][j]=dp[i-1][j];
			}
		printf("%d\n",dp[n][v]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值