背包问题讲解

动态规划基本思想


       动态规划( dynamic programming )算法是解决多阶段决策过程最优化问题的一种常用方法,难度比较大,技巧性也很强。利用动态规划算法,可以优雅而高效地解决很多贪婪算法或分治算法不能解决的问题。动态规划算法的基本思想是:将待求解的问题分解成若干个相互联系的子问题,先求解子问题,然后从这些子问题的解得到原问题的解;对于重复出现的子问题,只在第一次遇到的时候对它进行求解,并把答案保存起来,让以后再次遇到时直接引用答案,不必重新求解。动态规划算法将问题的解决方案视为一系列决策的结果,与贪婪算法不同的是,在贪婪算法中,每采用一次贪婪准则,便做出一个不可撤回的决策;而在动态规划算法中,还要考察每个最优决策序列中是否包含一个最优决策子序列,即问题是否具有最优子结构性质。

    动态规划算法的有效性依赖于待求解问题本身具有的两个重要性质:最优子结构性质和子问题重叠性质。

1 、最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。

2 、子问题重叠性质。子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简 单地查看一下结果,从而获得较高的解题效率。

当我们已经确定待解决的问题需要用动态规划算法求解时,通常可以按照以下步骤设计动态规划算法:

1 、分析问题的最优解,找出最优解的性质,并刻画其结构特征;

2 、递归地定义最优值;

3 、采用自底向上的方式计算问题的最优值;

4 、根据计算最优值时得到的信息,构造最优解。

1 ~ 3 步是动态规划算法解决问题的基本步骤,在只需要计算最优值的问题中,完成这三个基本步骤就可以了。如果问题需要构造最优解,还要执行第 4 步; 此时,在第 3 步通常需要记录更多的信息,以便在步骤 4 中,有足够的信息快速地构造出最优解。


背包讲解

主讲题目:

<1> NYOJ 289 苹果

<2> NYOJ 860 又见01背包

<3> NYOJ 311完全背包

其中分别包含题目信息,基本思路,动态转移方程的使用和具体代码。

基本思路

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物 品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

优化空间复杂度

以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。那么,如果只用一个数组 f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态 f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N
    for v=V..0
        f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。

事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。

过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。

procedure ZeroOnePack(cost,weight)
    for v=V..cost
        f[v]=max{f[v],f[v-cost]+weight}

注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。

有了这个过程以后,01背包问题的伪代码就可以这样写:

for i=1..N
    ZeroOnePack(c[i],w[i]);

初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。

为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么 任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。


看了上面的讲解,下面开始看看具体的题吧

一、苹果

问题描述:ctest有n个苹果,要将它放入容量为v的背包。给出第i个苹果的大小和价钱,求出能放入背包的苹果的总价钱最大值。

这里的物品每样只有一件,不可以多次取,

二、又见01背包

问题描述:  有n个重量和价值分别为wi 和 vi 的 物品,从这些物品中选择总重量不超过 W的物品,求所有挑选方案中物品价值总和的最大值。其中数值范围1 <= n <=100、1 <= wi <= 10^7、1 <= vi <= 100、1 <= W <= 10^9。


思路:上面这两个题都是求放入背包最大价值,所以基本做法是一样的,都是从背包容量V开始倒序遍历。唯一不同的是,01背包中的数据太大,开不了那么大的数组,根据苹果的做法是做不出来的,所以就要稍微转换一下思路,苹果中是从背包体积倒序,数组中储存的是当前最优价值总和,最后求出最大价值。那么01背包中就可以从所有物品价值总和开始倒序,数组中储存该价值下的最小物品体积,最后求出最小体积对应的下标,即是所求最大价值总和。但是需要注意的是苹果中的数组中存的是当前状态的价值最大值,所以该数组内元素初始化为0,求两者中的较大者。而01背包中的数组存的是当前状态下的体积最小值,所以数组初始化为尽可能大的值求两者中的较小者。

具体解法: NYOJ 苹果 链接:点击打开链接         NYOJ 又见01背包  链接:点击打开链接

三、完全背包

问题描述:完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO。

思路:这个题与苹果类似,所以基本解法一样,不过这个题中的物品可以取多次,所以应该从从物品体积开始正序到背包体积,需要特别注意的地方是数组应初始化为尽可能小的数值,求其中较大者。

具体解法: NYOJ 完全背包   链接:点击打开链接


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值