Interleaving String--lintcode

Description

Given three strings: s1, s2, s3, determine whether s3 is formed by the interleaving of s1 and s2.

Example

For s1 = “aabcc”, s2 = “dbbca”
When s3 = “aadbbcbcac”, return true.
When s3 = “aadbbbaccc”, return false.

这题用动态规划是最方便的。所以要找到公式才可以。

例:s1 = “aabcc”, s2 = “dbbca”,s3 = “aadbbcbcac”

首先创建一个dp[s1.length()+1][s2.length()]的二维数组,dp[i][j]表示s1取前i位,s2取前j位,是否能组成s3的前i+j位。可以返回的是true不可以返回的是false。dp[0][0]=true.

例如:s1取一位 a,s2不取,能够组成s3的前1+0位。所以dp[1][0]=true.而s2[0]!=s3[0]所以dp[0][1]=false;以此类推,可以得到dp的值。
如图:
这里写图片描述

但是如何用代码判断是否可以组成呢??

先看第一行:dp[1][j]
dp[1][0]可以组成,所以s1中已经取了a,然后看看s2中可以取第一个和a组成s3的前2位字符。很明显不可以(可能有人很好奇,s2中不是有一个a吗,可以和s1中的a组成啊,注意:s2中的a在最后一位。在a前面的字符取完才可以取a.否则字符串的顺序就乱了。就无法交替构成s3.)所以s2中的第一个字符d都不可以,其后面的都不可以。
再看第二行:dp[2][j]
dp[2][0]可以组成,所以s1中取出aa, 然后取出s2中的第一个字符d看看可不可以,明显 可以。

根据上面两行 得出规律:dp[i][j-1]需为true. 然后取出s2中值 s2[j-1]是否和s3[i+j-1]相等。 可以则dp[i][j]为true. 即:

if (s2.charAt(j - 1) == s3.charAt(i + j - 1) && dp[i][j - 1]) {  
        dp[i][j] = true;  
}  

同理 以列 为例。可以得到

  if (s1.charAt(i - 1) == s3.charAt(i + j - 1) && dp[i - 1][j]) {  
    dp[i][j] = true;  
  }  

综合起来:
dp[i][j] = (dp[i - 1][j] && s1.charAt(i - 1) == s3.charAt(i + j - 1)) || (dp[i][j - 1] && s2.charAt(j - 1) == s3.charAt(i + j - 1));

就是根据dp取上面还是左面。取上边的时候(代表s2取了之后,切换到s1),s1的字符要和s3字符相等。取左边的时候 (代表s1取了之后,切换到s2),s2的字符要和s3字符相等

代码:

public class Solution {  
    public boolean isInterleave(String s1, String s2, String s3) {  
        // Note: The Solution object is instantiated only once and is reused by each test case.  
        if (s1 == null || s2 == null || s3 == null) return false;  
        if (s1.length() + s2.length() != s3.length()) return false;  
        boolean[][] dp = new boolean[s1.length() + 1][s2.length() + 1];  
        dp[0][0] = true;  
        for(int i = 1; i < s1.length() + 1; i++) {  
            if (s1.charAt(i - 1) == s3.charAt(i - 1) && dp[i - 1][0]) {  
                dp[i][0] = true;  
            }  
        }  
        for(int j = 1; j < s2.length() + 1; j++) {  
            if (s2.charAt(j - 1) == s3.charAt(j - 1) && dp[0][j - 1]) {  
                dp[0][j] = true;  
            }  
        }  
        for(int i = 1; i < s1.length() + 1; i++) {  
            for(int j = 1; j < s2.length() + 1; j++) {  
                 dp[i][j] = (dp[i - 1][j] && s1.charAt(i - 1) == s3.charAt(i + j - 1)) || (dp[i][j - 1] && s2.charAt(j - 1) == s3.charAt(i + j - 1));
            }  
        }  
        return dp[s1.length()][s2.length()];  
    }  
}  

还有一种递归的方法(参考别人的):

public class Solution {  
    public boolean isInterleave(String s1, String s2, String s3) {  
        if (s1.length()+s2.length()!=s3.length()) return false;  
        return rec(s1,0,s2,0,s3,0);  
    }  

    public boolean rec(String s1, int p1, String s2, int p2, String s3, int p3){  
        if (p3==s3.length()) return true;  
        if (p1==s1.length()) return s2.substring(p2).equals(s3.substring(p3));  
        if (p2==s2.length()) return s1.substring(p1).equals(s3.substring(p3));  
        if (s1.charAt(p1)==s3.charAt(p3)&&s2.charAt(p2)==s3.charAt(p3))  
            return rec(s1,p1+1,s2,p2,s3,p3+1) || rec(s1,p1,s2,p2+1,s3,p3+1);  
        else if (s1.charAt(p1)==s3.charAt(p3))  
            return rec(s1,p1+1,s2,p2,s3,p3+1);  
        else if (s2.charAt(p2)==s3.charAt(p3))  
            return rec(s1,p1,s2,p2+1,s3,p3+1);  
        else return false;  
    }  
}  

参考网址:http://blog.csdn.net/u011095253/article/details/9248073

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值