5*.使用模拟退火算法解决“费马点”问题

本文介绍如何运用模拟退火算法解决费马点问题,即找到多边形内使所有顶点距离之和最小的点。算法流程包括初始化、新解生成、中间值函数计算、接受新解判断及终止条件设定。通过逐步减小距离L,直至满足特定阈值,实现算法的收敛。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5*.使用模拟退火算法解决“费马点”问题,“费马点”问题是寻找到多边形所有顶点距离之和最小的点。主要思路如下:

(1)       初始化:设置初始距离,初始点位置P,每个L值的迭代次数为4次,分为上下左右四个方向。

(2)       对距离L的每次迭代,执行第3到6步。

(3)       产生新解。

(4)       计算增量中价函数。

(5)       如果小于0则接受新解,否则以为新解的概率为。

(6)       如果满足终止条件则算法成功退出,终止条件为L小于一个阈值。

L逐渐减少,然后进入第二步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序哥聊面试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值