【模型调参总结之解决模型过拟合方法】

模型调参总结之解决模型过拟合方法

前言
  • 在深度学习中对于过少的数据集,模型往往会产生过拟合现象。本文将对过拟合问题进行归纳和总结,并针对性的提出一点自己的见解。
原因
  • 由于数据集中图片数量较少,但模型训练次数扩大时,会导致模型对于训练集中图片分布情况过度依赖,从而降低了模型对于其他分布数据的预测能力,降低了模型的泛化性能。
主要表现
  • 模型对于验证集中loss 上升 并且训练集中loss下降
  • 模型对于验证集中图片准确度下降
解决方法
  • 加大权重衰减指数(weight decay)

权重衰减原理(为什么可以对权重进行衰减)

我们对加入L2正则化后的代价函数进行推导,先求导:
在这里插入图片描述
可以发现L2正则化项对b的更新没有影响,但是对于w的更新有影响:
在这里插入图片描述
在不使用L2正则化时,求导结果中w前系数为1,现在w前面系数为1-ηλ/n,因为η、λ、n都是正的,所以1-ηλ/n小于1,它的效果是减小w,这也就是**权重衰减(weight decay)**的由来。当然考虑到后面的导数项,w最终的值可能增大也可能减小。

权重衰减作用

  • L2正则化项有让w变小的效果,但是为什么w变小可以防止过拟合呢?

原理
(1)从模型的复杂度上解释:更小的权值w,从某种意义上说,表示网络的复杂度更低,对数据的拟合更好(这个法则也叫做奥卡姆剃刀),而在实际应用中,也验证了这一点,L2正则化的效果往往好于未经正则化的效果。
(2)从数学方面的解释:过拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。而正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况。

  • 加入Dropout 在训练时,我们随机地“删除”一半的隐层单元,视它们为不存在

  • 进行适量的数据增强

  • 可以从loss本身进行分析,如果是CE loss上升 说明模型预测置信度和标签的匹配程度在变小(但也仅仅反应了预测置信度),同时要结合评价指标,如果CE loss 只有轻微上升,但评价指标(F1)并没有下降,结果应该并无大碍。

参考链接
  • https://blog.csdn.net/program_developer/article/details/80867468
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值