深度学习
文章平均质量分 93
故事挺秃然
攻城狮的故事挺秃然!!!
展开
-
NLP--一起学习Word Vector【实践】
在大模型时代,embedding成为一项必不可少的技术,主要是因为它能够有效地将大量高维数据(如文本、图像和音频信息)转换成更低维的、密集的向量表示。这种表示可以捕捉到数据的本质特征,并且在处理和计算上更为高效。通过embedding,模型可以在这些压缩的向量空间中学习数据之间的复杂关系和模式,从而提高了处理速度和准确性。此外,embedding使得模型能够在较小的表示空间中进行操作,减少了计算资源的需求,同时也便于模型的训练和推理,这对于处理现代大规模数据集尤为关键。原创 2024-10-24 17:43:03 · 1142 阅读 · 0 评论 -
我的创作纪念日
强化学习(Reinforcement Learning, RL),又称再励学习、评价学习或增强学习,是机器学习的范式和方法论之一,用于描述和解决智能代理(agent)在与环境的交互过程中通过学习策略以达成回报最大化或实现特定目标的问题。多样性除了从原始数据中获取,也可以通过prompt_template方式构建,对prompt指令进行数据增强,比如中文翻译英文的指令可以拓展为,中译英,翻译中文为英文等相同语义的指令。RLHF的成功取决于人类提供的反馈的质量,根据任务和环境,反馈的质量可能是主观的和可变的。原创 2024-01-18 10:32:58 · 1024 阅读 · 0 评论 -
NLP--名词概述【笔记】
表中涵盖了自然语言处理(NLP)任务中大量的名词(简称词)以及其释义,该表只为你能简单了解其概念是什么。如:LSH、KLD、ICL等原创 2024-01-11 16:26:49 · 786 阅读 · 0 评论 -
NLP--Transformer概览【笔记】
你可以通俗易懂的了解,Transformer中的编码器、解码器是什么以及他们中间的细节所对应的概念是什么,具体中间是怎么变化的。原创 2024-01-11 11:47:39 · 909 阅读 · 0 评论 -
NLP--Transformer探索(微观)【笔记】
Transformer学习细节,从微观上深入探索transformer,了解其发展与计算。原创 2023-03-15 15:24:46 · 236 阅读 · 0 评论 -
NLP--Transformer探索(宏观)【笔记】
学习transformer,要“知其然,知其所以然”,先从Embedding上来学习,从宏观和微观上来学习,宏观上整体把握Word Embedding->ELMO->BERT->GPT,再从微观上深入了解Transformer,掌握其细节流程。原创 2023-03-15 12:42:45 · 161 阅读 · 0 评论 -
NLP--社区检测算法(Community Detection)总结【原理】
社区检测(Community Detection)又被称为是社区发现,用于评估节点组如何聚类或分区,以及它们增强或分离的趋势。重点对图算法中的社区检测进行了整理总结。原创 2022-08-30 18:04:56 · 17850 阅读 · 0 评论 -
NLP--中心性算法(Centrality Algorithms)总结【原理】
中心性算法(Centrality Algorithms):度中心性(Degree centrality)、接近中心性(Closeness centrality)、中介中心性(Betweenness centrality)、特征向量中心性(Eigenvector centrality)等原创 2022-08-29 18:57:52 · 7666 阅读 · 2 评论 -
NLP--相似度方法总结【原理】
从多角度来分析相似度计算常用方法。原创 2022-08-25 11:31:05 · 2932 阅读 · 0 评论 -
NLP--优化器(Optimizer)总结【分析】
机器学习与深度学习中优化器的分析原创 2022-08-24 18:55:37 · 1028 阅读 · 0 评论