从【bzoj1041】说开去(Gauss整数学习笔记)

本文探讨了求解不定方程x2+y2=r2的整数解问题,通过分析和引入高斯整数的概念,证明了问题与高斯整数的性质密切相关。利用高斯整数的唯一分解整环特性,得出了解的数量等于r2的高斯整数质因子分解后,每组共轭质因子次数加1的积的4倍。通过对整数进行质因子分解,可以高效解决这类问题。
摘要由CSDN通过智能技术生成

由于博主实在太菜,本文中极其容易出现错误,请各位指正,谢谢

题意(经典问题):
求一个给定的圆( x2+y2=r2 ),在圆周上有多少个点的坐标是整数。
即:不定方程 x2+y2=r2 有多少组整数解。
经典做法请百度,或看这里
http://blog.sina.com.cn/s/blog_8d5d2f0401017skv.html
orz rzz

然而这个做法实在不怎么优美,且时间复杂度为 O(nlogn) ,不够优秀,并且也不易推广。于是我们来探究一下这个问题。

首先我们将其抽象为一个函数 f(x) f(x) 表示方程 a2+b2=x2 的整数解的个数。
按照OI养成的习惯首先对 f(x) 进行打表找规律。。。发现 f(x) 是不小于4的偶数(废话),并且因子较多的数的 f(x) 值较大,且近似成乘积增长。

猜想1 f(x) 是积性函数,或可以表示成 kg(x)+o(x) 的形式,其中 k 是常数, g(x) 是积性函数, limxo(x)g(x)=0 (即

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值