可口可乐如何利用 AI 保持它在饮料市场的霸主地位

这篇报道来自AINEWS原文:
《How Coca-Cola is using AI to stay at the top of the soft drinks market》

可口可乐面临的挑战:

可口可乐作为全球最大的饮料公司,拥有超过500个品牌。全球每天有17亿人次的消费者在畅饮可口可乐公司的产品,大约每秒钟售出19,400瓶饮料。
可口可乐的产品每天在超过200个国家进行销售,在这些市场中,每个市场都存在风味、卡路里含量、营销偏好以及所面临的竞争对手的差异。
为了在每个领域保持领先地位,它必须收集和分析来自不同来源的大量数据,以确定其500个品牌中哪些可能受到好评,然而了解这些当地的偏好是一项非常复杂的任务。

AI如何帮助可口可乐
  • 自动售货机,智能推荐
    可口可乐每天通过自动售货机提供大量饮品,通常客户将通过触摸屏显示器进行交互,使他们能够选择他们想要的产品。该公司已经在这些机器中嵌入AI算法,使它们能够推广最有可能在安装它们的特定位置受到欢迎的饮料和口味。
    可口可乐通过其触摸屏自动售货机上的界面收集有关当地饮料偏好的数据 - 仅在日本就安装了超过100万个。
  • 分析社交媒体,了解用户喜好
    可口可乐还使用人工智能来分析社交媒体,了解客户喜欢在何处,何时以及如何使用其产品,以及哪些产品在特定地区受欢迎。 超过90%的消费者根据社交媒体内容做出购买决策,了解其数十亿客户如何在Facebook,Twitter和Instagram等平台上与品牌进行讨论和互动对于其营销策略至关重要。
    为了了解其产品如何在社交媒体上进行讨论和分享,该公司已经建立了37个“社交中心”来收集数据并使用Salesforce平台对其进行分析以获得洞察力。
  • 图像识别,发现潜在客户
    它还使用图像识别技术来定位在社交媒体上分享图片的用户,来找到潜在的消费用户,并精准投放广告。
    可口可乐公司致力于使用谷歌的TensorFlow技术开发自己的图像识别解决方案。 这使用了卷积神经网络,使机器能够识别商品标识码,这些商品标识码通常根据打印的时间和地点而有所不同。
认知收获
  • If you sell hundreds of different products across multiple countries, perceptions and customer behaviour can vary greatly from market to market. Understanding these differences helps tailor specific messages for different markets, rather than relying on a one-size-fits-all approach
  • When you’re dealing with global brands, user data from social media or generated through your own systems (such as vending machines) is vast and messy. AI provides a viable method of structuring this data and drawing out insights
  • Computer vision technology such as image recognition tools can analyse millions of social media images to help a brand understand when, how and by whom its products are enjoyed
  • As well as making marketing decisions, brands that are fully invested in AI are beginning to use it for designing new products and services
数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
内容概要:本文介绍了DeepSeek与Mermaid结合实现可视化图表自动化生成的技术及其应用场景。DeepSeek是一款由杭州深度求索人工智能基础技术研究有限公司开发的大语言模型,具有强大的自然语言处理能力,能理解复杂的自然语言指令并生成对应的Mermaid代码。Mermaid是一款基于文本的开源图表绘制工具,能够将简洁的文本描述转化为精美的流程图、序列图、甘特图等。两者结合,通过DeepSeek将自然语言转化为Mermaid代码,再由Mermaid将代码渲染成直观的图表,极大提高了图表制作的效率和准确性。文章详细描述了DeepSeek的发展历程、技术架构及应用场景,Mermaid的基础语法和图表类型,并通过一个电商平台开发项目的实战演练展示了二者结合的具体应用过程。 适合人群:具备一定编程基础和技术理解能力的研发人员、项目经理、数据分析师等。 使用场景及目标:①需求分析阶段,快速生成业务流程图和功能关系图;②设计阶段,生成系统架构图和数据库设计图;③实现阶段,辅助代码编写,提高编码效率;④验证阶段,生成测试用例和测试报告图表,直观展示测试结果。 阅读建议:在学习和使用DeepSeek与Mermaid的过程中,建议读者结合具体项目需求,多实践生成图表和代码,熟悉两者的交互方式和使用技巧,充分利用官方文档和社区资源解决遇到的问题,逐步提高图表绘制和代码编写的准确性和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值